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Preface

The Computer Vision Winter Workshop is an annual meeting formed around re-
search groups from the Vienna University of Technology (PRIP), Graz University of
Technology (ICG), Czech Technical University in Prague (CMP), and the Univer-
sity of Ljubljana (CVG, MVG, ViCoS). The goal of the workshop is to communicate
fresh ideas between the four groups and to provide conference experience to students.
The workshop is open to students worldwide.

The 18th edition of this workshop was organized by the Pattern Recognition and
Image Processing Group (PRIP), and was held in Hernstein, Austria, February 4-6,
2013.

32 Papers were submitted to the workshop this year. Each of them was reviewed
by at least 2 members of the Program Committee, and 28 were selected for oral
presentation at the workshop. A few authors wished that their paper is not included
in these proceedings. According to the general philosophy of the CVWW series,
these wishes have been accepted. 16 papers were included in the proceedings of the
workshop.

Besides the submitted papers, one invited talk was included. We would like to
thank Werner Purgathofer (Institute of Computer Graphics and Algorithms, Vienna
University of Technology) for his valuable contribution.

Last but not least, we would like to thank the members of the Program Committee
for their careful reviews, and wish the participants many new contacts and fresh
ideas.

Walter G. Kropatsch, Fuensanta Torres and Geetha Ramachandran
Vienna, 2013
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Accurate Fast Simulation of Light

Werner Purgathofer
Vienna University of Technology

www.cg.tuwien.ac.at

Abstract.
Light distribution in a scene is a very complex issue if it shall be close to realism. For a lamp producing and

light planning company such as Zumtobel it is of great value to be able to design installations interactively,
providing immediate feedback to the costumers about the final result. Many aspects such as reflections and
indirect lighting make this task difficult. This talk will give some ideas how a project at the research center
VRVis approaches this topic, and which algorithms are useful for this. Where can we simplify without visible
loss? How can we use the GPU to speed up the calculations? Why are virtual lights an efficient concept? Some
example images provide evidence.
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Star Convex Object Detection by the Infinite Shape Mixture Model

Tomáš Sixta
Center for Machine Perception, Czech Technical University

Karlovo náměstı́ 13, 12135 Prague, Czech Republic
sixtatom@fel.cvut.cz

Abstract. Shape is an important feature of many ob-
ject categories. In this paper we propose a Bayesian
framework for detection of unknown number of ob-
jects based on their shape. The task is formulated as
a minimization of Bayesian risk. The loss function
is designed in such a way that the number of objects
need not to be known or even bounded. We introduce
a probability distribution over object states (number
of objects and their poses) called Infinite Shape Mix-
ture Model which is a modification of Rasmussen’s
Infinite Gaussian Mixture Model [7]. Conditional
posterior distributions are derived for all parameters
of the model in order to make the inference feasible.
Performance of the model is tested on two brief ex-
periments.

1. Introduction

Object detection is crucial task in many computer
vision applications. Three main approaches can be
found in recent literature: appearance based meth-
ods, shape-driven and combination of both. The
method introduced in this paper is shape-driven but
the information about appearance can be incorpo-
rated easily. The task of detecting unknown number
of objects with star convex shapes 1 is formulated as
a minimisation of the Bayesian risk, i.e.

φ∗ = argmin
d(x)

∫

Φ
L(ψ, d(x))p(ψ|x)dψ, (1)

where x are the observables, d(x) is the decision and
ψ ∈ Φ is a vector of model parameters - number of
objects and their poses.

True number of objects in the image is rarely
available a priori in practice. We design the loss func-

1A set S is star convex if there exists an x0 ∈ S, such that
the line segment from x0 to any point in S is contained in S

tion and the probabilistic model in such a way it need
not to be known or even bounded.

In Bayesian framework all the parameters of the
model are considered random variables with their
own probability distributions. Due to mathematical
covenience it is common to put on them conjugate
priors so their posterior belongs to such family of
distributions for which a specialized sampling algo-
rithm exists. We rather choose priors with apropriate
modelling properties and generate samples from cor-
responding posterior by Slice sampling [4].

2. Related work

There are many papers in the literature which
make use of the shape for object detection. Yu et
al. [10] combine local and global shape features.
They first detect so called Triple-Adjacent-Segments
(TAS) on an edge image. These class independent
features are then matched to a codebook and pre-
learned spatial relationships among TAS are used to
estimate potential object center. Finally, the object
category is determined by probabilistic voting.

The Fan Shape Model [3] allows to describe ob-
jects jointly by their appearance and shape. The
shape is represented by lengths and angles of rays
emanating from a reference point to the points on its
contour. A probability distribution over rays’ param-
eters is learned for each object class and the object
detection task is solved as finding the maximum a
posteriori estimate.

Bai et al. [1] propose to use the skeleton instead
of contours as shape representation. The topology
of a skeleton is represented by a tree: the skeleton
endpoints (points with only one adjacent point) and
the junction points (more than two) are nodes and
the segments among them are edges. A prototypical
tree is constructed for each class and the actual shape
of skeleton segments in the training data (associated
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with each edge) is modelled by an exemplar-based
mixture model. Detection itself is performed by vari-
ant of the sum-and-max algorithm.

Vo et al. [9] formulate the multi-object detection
problem in a Bayesian framework by modeling the
collection of states of objects as a random finite set
and computing its posterior distribution given the im-
age observation. They derive closed-form expres-
sions of this posterior for various priors under the as-
sumptions of non-overlapping objects. Despite that,
several heuristics are needed in order to make the in-
ference feasible.

3. Loss function

We assume that the poses of all objects are fully
specified by parameters φ of two types: a vector
of “ordinary” parameters ϕ (e.g. shape, position,
scale) and a vector of binary switches s which en-
code, whether an object occurs in the image. We de-
note the vector of ordinary parameters describing the
j-th object ϕj and the corresponding switch sj . The
proposed loss function is then

L(ψ, φ) =
∞∑

j=1

sj ||ϑj − ϕj ||2 + l(tj − sj)2 (2)

where ||.|| is L2 norm, φ = {ϕ, s} is the decision,
ψ = {ϑ, t} is a vector of true (but unknown) param-
eters of the model, ϑ is a vector of ordinary parame-
ters, tj is the true value of the j-th switch and l ∈ R+

is a positive constant. Notice that the loss function
(2) is additive with respect to groups of variables.
Taking the partial derivative with respect to the k-th
ordinary parameter of j-th object and setting it equal
to zero we obtain the optimal decision rule

ϕj∗k = E(ϑjk|x). (3)

The optimal decision for a single switch sj is ob-
tained by substituting ϕj∗k from equation (3) into the
loss function:

sj =





0 E(sj |x) <
l +
∑

k Var(ϑjk|x)

2l
1 else

(4)

Decision rule (4) effectively means the higher is un-
certainty (measured by variance) in values of param-
eters the less likely would sj be “switched on”. This
is a desirable property in many applications as it al-
lows to discard objects which are too noisy.

4. Infinite Shape Mixture Model

For clarity of explanation the model will be de-
fined for 2D case. We assume the objects are com-
posed of points x ∈ R2 which correspond to image
pixels (although this is not necessary). If a binary
segmenation would be available, all the foreground
pixels could be considered data points. However, this
requirement might be too restrictive so we consider
all the pixels of the image as data points and define
the model in such a way that only prior probabilities
πf and πb for being assigned to foreground or back-
ground has to be provided for each pixel.

Although it is rarely true in reality we assume that
the joint probability of all data points given parame-
ters factorizes, i.e.

p(x|φ) =

n∏

i=1

p(xi|φ). (5)

Probability of a single point xi is

p(xi|φ) = πb(xi)B(xi) + πf (xi)

∞∑

j=1

sjπjSj(xi|ϕj)

(6)
where πb(xi) + πf (xi) = 1, πb(xi) and πf (xi)
are prior probabilities for pixel xi being assigned
to background or foreground respectively, B repre-
sents the background component, Sj represents the
j-th shape component and πj are shape components
weights (

∑∞
j=1 πj = 1).

We also introduce for each data point a latent vari-
able ci called indicator whose role is to encode which
component has generated that point. Indicators may
either attain values 1, 2, 3, ... (index of a shape com-
ponent) or ’b’ (background).

4.1. Background component

The background component B models probability
that pixel xi belongs to the background. We assume
it to be uniform, i.e.

B(xi) =

{
1
wh xi is within image bounds
0 else

(7)

where w and h are width and height of the image.

4.2. Shape components

The single shape component Sj in the mixture (6)
is a probability distribution over object poses. Its dis-
tribution function is as follows:

S(xi|φ) =
1

Z(f, T )
exp

(
−f2(T−1(xi))

)
(8)
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where f : R2 → R is a function that describes a
“template shape” of the object, T : R2 → R2 is a
geometric transformation andZ(f, T ) is the partition
function

Z(f, T ) =

∫

R2

exp
(
−f2(T−1(x))

)
dx. (9)

The template shape is a star convex subset of R2.
Without loss of generality we may assume it is star
convex with respect to the origin of the coordinate
system. Thus f can be then specified in the follow-
ing manner:

f(xi) =





0 xi = 0R2

1 xi lies on template shape boundary
||xi||
||x∂ || else

(10)
where x∂ is the intersection of the line segment from
0R2 to xi and the boundary of the template shape.
Roughly speaking, such f measures distance of a
point from the origin of coordinates, however it also
depends on direction of the vector xi.

The only mathematical requirement on the trans-
formation T is existence of its inverse. We further
rectrict it to be a similarity transformation consist-
ing only of scaling, rotation and translation (in this
order). In homogeneous coordinates this can be effi-
ciently expressed as matrix multiplication:

T (xi) =




vx cosβ −vy sinβ tx
vx sinβ vy cosβ ty

0 0 1






xi1
xi2
1




(11)
where xi = (xi1, xi2)>, (tx, ty)

> is the translation
vector, β is the angle of rotation and vx and vy are
the scales. It can be shown that for this family of
transformations the density function (8) becomes

S(xi|φ) =
1

vxvyZ(f)
exp

(
−f2(T−1(xi))

)
(12)

where Z(f) now only depends on the template
shape:

Z(f) =

∫

R2

exp
(
−f2(x)

)
dx. (13)

This is important, because it allows us to define
closed-form conditional posteriors for all transfor-
mation parameters.

4.3. Component parameters

In this section we will derive conditional posteri-
ors for all the parameters of the model. We assume
that the priors for components of translation vector
of j-th component are uniform (index j is ommited
in the formulas):

p(tx) ∼ U(0, w)
p(ty) ∼ U(0, h)

(14)

Rotational angle β is assumed to follow uniform dis-
tribution

p(β) ∼ U(0, 2π). (15)

In order to ensure invertibility of T neither sx nor
sy can be equal to zero. For many applications it is
also permissible to disallow reflections (i.e. require
sx and sy to be positive). Under such constraints a
reasonable prior for the scale parameters is the log-
normal distribution:

p(vx) =
1√

2πσvxvx
exp

(
−(log vx − µvx)2

2σ2
vx

)
.

(16)
The prior for the vy is from the same family with
parameters µvy and σvy . In Bayesian settings µvx ,
µvy , σvx and σvy would also be considered random
variables with their own priors. However we argue it
is more appropriate to consider them fixed and learn
them from the training data. To emphasize this we
write p(vx) instead of p(vx|µvx , σvx) (p(vy) corre-
spondingly).

Strictly speaking template shapes are also random
variables and should be sampled as well. In this pa-
per, however, we assume that all objects in the im-
age are instances of the same template shape and we
postpone this question to future work.

The conditional posterior distributions for the
transformation parameters of j-th component are ob-
tained by multiplying the likelihood (5) conditioned
on the indicators by their corresponding priors:

p(tx,j |x, c, T−tx,j
) ∝





∏
i:ci=j

S(xi|f, T j) tx,j ∈ [0, w]

0 else
(17)

where T−rho denotes vector of all transformation pa-
rameters but ρ. Posteriors for ty,j and βj differ only
in bounds of uniform distribution and in the fact that
they are functions of ty,j and βj respectively. Poste-
rior distribution for scale vx,j is

p(vx,j |x, c, T−vx,j ) ∝ lnN (vx,j |µvx,j , σvx,j )·
·∏i:ci=j

S(x, i|f, T j)
(18)
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and p(vy,j |x, c, T−vy,j ) similarly.
We choose switches s to deterministically depend

on the components’ weights:

p(sj = 0|πj) =

{
0 πj > 0

1 πj = 0

p(sj = 1|πj) =

{
0 πj = 0

1 πj > 0

(19)

Using this prior we need not to explicitly sample the
switches during the inference as they are uniquely
determined by their corresponding weights. There-
fore we will replace sjπj by πj in the sequel for clar-
ity of derivations.

Following [7] the shape component weights π are
given Dirichlet prior with concentration parameter αk :

p(π|α) ∼ Dirichlet(
α

k
, ...,

α

k
) (20)

where

Dirichlet(
α

k
, ...,

α

k
) =

Γ(α)

Γ(αk )k

k∏

j=1

π
α
k
−1

j (21)

and k is number of components in the mixture. For
the time being we will consider k to be finite and
derive desired conditional posteriors as limiting case
k →∞.

Given the weights π and unary potentials πb and
πf , the indicators c follow multinomial distribution:

p(c|π, πb, πf ) =
∏

i:ci=b

πb(xi)
∏

i:ci∈1..k

πf (xi)
∏

j:nj>0
j 6=b

π
nj
j

(22)
where nj are occupation numbers, i.e. number of
indicators whose value is equal to j. By multiplying
(22) by (20) and integrating over weights π we obtain
prior distribution for indicators which depends only
on finite number of parameters:

p(c|α, πb, πf ) = ΠbΠf
Γ(α)

Γ(n+ α)

k∏

j=1

Γ(nj + α
k )

Γ(αk )

(23)
where

ΠbΠf =
∏

i:ci=b

πb(xi)
∏

i:ci∈1..k

πf (xi). (24)

In order to make the inference feasible we need the
conditional probability for a single indicator. Taking

the limiting case k →∞ and fixing all the indicators
but ci we obtain

p(ci = b|α, πb, πf ) = πb(xi) (25)

p(ci = j|α, πb, πf ) = πf (xi)
n−i,j

n− 1 + α
(26)

where j ∈ {1, 2, 3, ...} and n−i,j is the number of
points, excluding xi, which are associated with com-
ponent j, i.e.

n−i,j =

{
nj − 1 ci = j

nj else
(27)

Finally

p(ci 6∈ C|α, πb, πf ) = πf (xi)
α

n− 1 + α
(28)

where C denotes the set of all currently represented
classes (including background). Conditional posteri-
ors for single indicators are obtained by multiplying
priors (25), (26) and (28) by their corresponding like-
lihood functions.
Background component:

p(xi|ci = b, c−i) =

{
1
wh xi is within image bounds
0 else

(29)
Components for which n−i,j > 0:

p(xi|T j , c−i) ∝ exp(−f2(T j
−1

(xi))). (30)

All other components together:

p(xi|ci 6∈ C, c−i) ∝
∫
p(xi|f, T j)p(T j)dT j (31)

where

p(T j) = p(tx,j)p(ty,j)p(βj)p(vx,j)p(vy,j). (32)

Integral in (31) is not tractable, so we sample from
the priors in order to generate a Monte Carlo estimate
of the probability of generating a new class (see [5]
and [7] for details).

Finally, following [7], a vague prior of inverse
Gamma shape is put on concentration parameter α:

p(α) ∝ α− 3
2 exp

(
− 1

2α

)
. (33)

The conditional prior for all indicators in the limit-
ing case k → ∞ can be derived by reinterpreting
equations (25), (26), and (28) to draw a sequence of
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indicators, each conditioned only on the previously
drawn ones:

p(c|α, πb, πf ) = ΠbΠf
αk
†
Γ(α)

Γ(n+ α)
(34)

where k† is number of currently represented compo-
nents in the model (including background). Condi-
tional posterior distribution for α is

p(α|c, πb, πf ) ∝ ΠbΠf exp

(
− 1

2α

)
αk
†− 3

2 Γ(α)

Γ(n+ α)
(35)

5. Inference

We start the inference with all datapoints assigned
to one shape component. The sampling procedure is
performed by standard Gibbs sampling. Due to the
non-conjugate priors we sample from non-standard
distributions using Slice sampling [4], for which one
only has to be able to evaluate a function which is
proportional to the probability density the samples
are generated from.

The loss function (2) expects that the true index
of each shape component is always known and it is
possible to compute expected value and variances of
its parameters. However, this is not true in general,
it may happen during the inference that two compo-
nents would switch their ”positions”. This issue is
known as label switching problem in the literature
and there has been intensive research on this topic
(see [6], [8] for overview). Fortunately it turned out
that in this model label switching occures rarely in
practice (after burn-in period) and necessary quanti-
ties can be computed easily.

6. Experiments

6.1. Artificial data

As a proof-of-concept we performed a simple ex-
periment on artificial binary image 1a. The objec-
tive was to detect instances of X-like shape. There
were 30 manually positioned objects in the image.
Their angles were generated from the uniform distri-
bution U(0, 2π) and scales vx and vy from the log-
normal distribution lnN (3.2, 0.02). The inference
began with 200 burn-in sampling sweeps followed
by 100 iterations of collecting statistics. In this ex-
periment we did not sampled the concentration pa-
rameter α from distribution (35), but instead we set
it to α = 0.1. The concentration parameter indi-
rectly controls number of classes in the model: the

higher α the higher prior probability (28) of intro-
ducing new shape component. By setting it to a fixed
value we express prior knowledge about number of
components in the image.

(a) (b)

Figure 1: Artificial image (a) and detection results
(b)

(a) #1 (b) #100

(c) #200 (d) #300

Figure 2: Samples generated during the inference
(artificial image).

Evolution of the samples generated during the in-
ference and typical detection results are shown in fig-
ures 1 and 2. All 30 objects are correctly found, how-
ever, there are also four false positives, all appearing
near two or more overlapping objects. Poses of all
isolated objects are estimated correctly.

6.2. Detection of cells

Second experiment is detection of endothelial
cells’ nuclei in a phase contrast microscopy image
3a. Nuclei are in general darker than the cytoplasm,
however there are also several dark blobs which are
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too small and they should not be detected as nuclei.
In this case the binary segmentation was not avail-
able. Therefore, as a first step, we modelled the im-
age by a mixture of two gaussians, one for back-
ground and one for foreground, and estimated their
parameters by the EM algorithm. The pib and pif
were values of their pdfs normalized to sum to 1 for
each pixel. The template shape was unit circle. Pa-
rameters of the prior distributions for scales were es-
timated by maximum likelihood principle from sev-
eral hand annotated nuclei: vx ∼ lnN (2.7, 0.2) and
vy ∼ lnN (4.1, 0.3) (roughly corresponding to an el-
lipse with major diameter equal to 8 pixels and minor
diameter 5 pixels). Translation vectors and rotation
angles were assumed to a priori follow uniform dis-
tribution. Concentration parameter α was not fixed
in this experiment but it was considered as random
variable with posterior distribution function (35). As
in the previous experiment the inference began with
200 burn-in sampling sweeps followed by 100 itera-
tions of collecting statistics.

(a) (b)

(c) (d)

Figure 3: Detection of endothelial cells. Original
image (a), prior probability of foreground (black=0,
white=1) (b), binary segmentation (c) and detection
results (d)

Evolution of the samples generated during the in-
ference and typical detection results are shown in fig-
ures 3 and 4. As the concentration parameter α was
not fixed to a small value new detections were emerg-
ing faster during the inference when compared with

(a) #1 (b) #100

(c) #200 (d) #300

Figure 4: Samples generated during the inference
(endothelial cells).

the previous experiment. Despite high variance the
model was able to correctly estimate pose of most
of the nuclei. However as in the previous experi-
ment there are also several false positive detections
(marked in red).

7. Conclusion

In this paper we have formulated the object de-
tection task as a minimization of Bayesian risk. The
loss function is designed in such a way that the num-
ber of objects in the image need not to be known a
priori or even bounded. Further it provides a sim-
ple criterion for discarding objects whose pose is too
uncertain (possibly due to the noise).

The Infinite Shape Mixture Model, a probability
distribution over object states, is introduced and pos-
terior distributions for all its parameters are derived.
The inference is performed by standard Gibbs sam-
pling. Due to mathematical convenience it is com-
mon practice to use so called conjugate priors. In-
stead, we focus on modelling properties of the pri-
ors and show that efficient sampling is still possi-
ble by Slice sampling, for which one only has to be
able to evaluate a function which is proportional to
the desired probability distribution. Performance of
the model is tested on two brief experiments showing
promising results.
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Abstract. This paper introduces a general frame-
work for autonomous detection of curvilinear ob-
jects in aerial images. Our contribution is two-fold.
First, we designed simple yet efficient method, which
sequentially prunes the space of possible curvilin-
ear objects and thus reduces both the false negative
rate detection and computational resources with re-
spect to the exhaustive search methods. Second, our
method can handle many types of curvilinear objects
(e.g. roads, pipelines). We tested the method on our
own dataset consisting of highway images. The pro-
duced data set is publicly available. We reached the
93.07% overall accuracy.

1. Introduction

This work focuses on autonomous detection of curvi-
linear objects (CLO) from aerial images. We con-
sidered the scenario when the algorithm runs on the
unmanned aerial vehicle (UAV). Detection of curvi-
linear objects, such as roads or pipelines, in aerial im-
ages is important for many UAV applications. Possi-
ble applications are, for example, monitoring of traf-
fic situation on a highway or an autonomous naviga-
tion along a pipeline for inspection purposes.

The UAV has usually limited computational re-
sources on board, which makes using time consum-
ing methods, such as [12],[2],[7], [15], [13], [11]
prohibitive. Computationally less consuming ap-
proaches, typically based on dynamic optimization
[5], [14] usually do not achieve sufficient level of
autonomy, since a user interaction is required. We
propose an algorithm combining advantages of both
above mentioned categories to produce a fully au-
tonomous method for above mentioned purposes. We
also provide the accuracy measure, which is not ob-
vious for state of the art methods. Our method is de-

signed to handle many types of curvilinear objects.
We made our dataset publicly available [18].

We assume that no user interaction is allowed dur-
ing the operation. This assumption becomes compli-
cated in the situations when there are more objects in
the scene and no one can decide, which is the rele-
vant one. We assume that the relevant object is the
dominant one.

The remaining part of the paper is organized as
follows. In Section 2, the problem formulation is de-
scribed. Section 3 provides the method overview step
by step. Section 4 summarizes our experimental re-
sults. We conclude the achieved results and further
work in Section 5.

2. Problem Formulation

The term CLO represents in the aerial images various
number of real world objects on the Earth, such as
roads, rivers, railways, forest paths, pipe lines, power
lines, etc. These objects can be of various sizes, can
have arbitrary orientation, position and structure.

2.1. Curvilinear Object Definition

To unify the description of several entities with
different appearance only the global view has to be
considered. The common properties of CLOs are
said to be the following:

• The width of the object changes smoothly.
• The object curvature changes smoothly.
• The object is distinguishable from the back-

ground.
• The object is long enough, it often passes

through the whole frame.
• The appearance can change non-continuously

(shadows, obstacles, etc.).

9



2.2. Method Requirements

The requirements with respect to the UAV appli-
cation are the following:

• Fully autonomous method,
• scale, rotation and position invariance,
• continuous object representation and
• real time.

3. Method Overview

Scale Space

Ridge Detector

Ridge

Classifier

Linkage

Algorithm
Frame

Ridges

Non-ridges Background

Roads

(lin. obj.)

Dominant road

Figure 1. Overview of the proposed method. The three-
stage design is depicted by black rectangles. The red rect-
angles demonstrate the inputs/outputs of certain stage.

The proposed method consists of three stages as de-
picted in Figure 1. In the first stage, the input image
is preprocessed using scale-space ridge detector 3.1.
The second stage performs the binary decision for
ridge classification 3.2. In the third stage, the link-
age algorithm 3.3 extracts the dominant curvilinear
structure. The contribution of this design is that it
specifies the properties of CLOs effectively and thus
reduces both false negative detection rate and com-
putational demands as compared with the exhaustive
search methods.

The ridge detector 3.1 identifies pixels whose lo-
cal neighbour looks curvilinear. The binary classi-
fier 3.2 evaluates the ridge neighbourhood and prop-
agates only those of a given object type. The link-
age algorithm 3.3 considers the global properties of
CLOs (defined in Section 2) and forms the dominant
curvilinear structure.

3.1. Ridge Detector

The differential geometric approach is used to find
both bright and dark ridges in the image intensity
function (Lindeberg [9]). The detection of structures
of various sizes is a crucial requirement and thus the
scale-space and its notation (Lindeberg [8]) has to be
introduced.

3.1.1 Scale Space Formulation

According to [9], the scale is proportional to the vari-
ancet of Gaussian kernelg : R2 ×R+ →R

g(x; t) =
1

2πt
exp−(x

⊤x
2t

) , (1)

The original image intensity functionf : R2 → R
can be transformed into scale-space with scalet us-
ing the mappingL : R2 ×R+ →R as

L(x; t) = g(x; t) ∗ f(x) , (2)

where∗ denotes convolution.
Using the introduced notation, the derivation can

be expressed as:

Lxαyβ(·; t) = ∂xαyβL(·; t) = gxαyβ(·; t)∗f(.) , (3)

whereα, β denotes the order of derivatives.

3.1.2 Bright and Dark Ridge Formulation

Following the notation introduced above and formu-
lation of bright and dark ridges in [9] [10] [6] one can
express the bright ridge





Lp = 0 ,
Lp2 < 0 ,

|Lp2 | ≥ |Lq2 | ,
(4)

and dark ridge respectively




Lq = 0 ,
Lq2 > 0 ,

|Lq2 | ≥ |Lp2 | ,
(5)

wherep and q denote the direction of the ridge
and its perpendicular direction, respectively. These
are obtained by the eigen analysis of the Hessian ma-
trix of L. Lq2 andLp2 corresponds to eigenvalues,
orientations ofp and q are related to orientation of
eigenvectors.

We assume that any CLO can be locally described
as a bright or dark ridge. Thus we can summarize that
this preprocessing does not lose any object in which
the user may be interested in.

The task of CLO detection has four degrees of
freedom (spatial coordinates× scale× orientation).
The main contribution of the scale-space ridge detec-
tor is that it uses just the 3D scale-space to determine
all four parameters.

As a preprocessing, there might be relevant also
another technique, such as Stroke Width Trans-
form [3] working with parallel edges.
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3.2. Ridge Classifier

The aim of the ridge classifier is to recognize the
ridges belonging to a given class (type of object)
as depicted in Figure 1. The ridges, whose appear-
ance match the given class, are preserved for further
processing. The rest is pruned (as depicted in Fig-
ure 1). We learnt the binary classifier from rectangu-
lar patches around the computed ridges. As depicted
in Figure 2, it is sufficient to incorporate as much
context as possible to be able to predict the object
class successfully. We use the ridge width to deter-
mine the patch size with sufficient context.

a) b)
Figure 2. The importance of the context presented on a
ridge example. An image a) consists only of the center
part of an image b). In the image a) there is not enough
context to determine the object class. It can be misclassi-
fied as a roof of a house, etc. On the other side, presence
of context in the image b) clarifies the object class.

For the development purposes, rotationally and
scale normalized samples are used as an input for the
classifier both in the learning phase and the predic-
tion process.

3.2.1 Descriptors and Features Selection

We focused at descriptors that are able to handle an
object symmetry, structure and are invariant to a lin-
ear transformation of image intensity function. Its
effective computation is important as well. Haar
features [17] and histograms of oriented gradients
(HoG) meet this requirements.

In Figure 3 there are types of Haar features used
for the description.

Figure 3. Haar features type overview.

The histogram of oriented gradients uses eight
equally spaced bins. The magnitude of the certain
gradient is linearly interpolated into two closest bins.
Let us define the ridge description

Tγ : R2 ×R+ × γ → Rn , (6)

as a mapping from ridge space ton dimensional fea-
ture space, whereγ ∈ 〈0;π) denotes the ridge orien-
tation.

The main contribution of these features are their
effective computation (using the integral images) and
scale invariance (with denoting appropriate normal-
ization factor).

3.2.2 Classification Tool

We used Boosting algorithm Gentle Adaboost (be-
low denoted asH(.) or Gentleboost) [4] as the ridge
classifier. We generated thousands of features per
patch and used automatic feature selection to select
the most discriminative ones.

The prediction works as follows:

ŷ = sign (H(x)−Θ) , (7)

whereΘ ∈ R is a classification threshold (by default
Θ = 0), x ∈ Rn is a feature vector and̂y ∈ {±1} is
the predicted class.

The contribution of the Gentleboost classifier are
both the automatic feature selection and the cascaded
prediction. It can learn any class of object and thus it
allows detection of any curvilinear structure.

3.3. Linkage Algorithm

The goal of the linkage algorithm is to gather the
preserved ridges into the curvilinear structure. The
pseudo algorithm is described by the Algorithm 1.
Linkage algorithm performs dynamic programming
(DP). We choose DP because it can deal with the
presence of occlusions and shadows. We slightly
modified the basic DP algorithm [16] by denoting the
scale change penalty and orientation change penalty.
Lets compute the optimal path at positionY =
(i, j, s) in a scale space with predefined predecessors
PY where the optimal valuesF (X), ∀X ∈ PY are
already known. Then theF (Y ) is computed as:

min
X∈PY

(F (X) + α(X,Y )γ(X,Y )H(Y ) ) , (8)

whereα(·, ·) β(·, ·) denote scale change penalty and
the ridge orientation penalty, respectively.

The linkage algorithm consists of three steps. In
the first step (lines 1 - 3 of Algorithm 1), the object
shape hypotheses for preserved ridges are generated.
The second step (line 4 of Algorithm 1) combines
these hypotheses and depicts the common parts of
them. In the last step (lines 5 - 8 of Algorithm 1),
these common parts are concatenated and form the
dominant curvilinear structure.
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Algorithm 1 Linkage Algorithm
Require: RidgesY = {Y } .
Ensure: CLO (F ∗

L∗ ,pL∗) .
1: InitializeH(Y ) according to Eq. 10.
2: (Fm,m = 1 . . . 4) ← Compute min-cost paths

in all directions using Eq. 8.
3: (F ∗

k ,pk, k = 1 . . .M) ← Generate hypotheses
for Y .

4: (A) ← Create the Accumulator of hypotheses
F ∗
k ,pk using voting schema described by Eq. 12.

5: Y ∗ = argminijs{A} .
6: ReinitializeH(Y ) according to Eq. 13.
7: (Fm,m = 1 . . . 4) ← Compute min-cost paths

in all directions using Eq. 8.
8: (F ∗

L∗ ,pL∗)← Generate hypothesis forY ∗.

3.3.1 Hypotheses Generation

We use the assumption that the CLO can pass
through any preserved ridge. Using this assumption
and proposed DP algorithm, we generate the min-
cost path for a given amount of preserved ridges.
Figure 4 depicts the recognized ridges. Generated

100

200

300

400

500

600

Figure 4. The ridges preserved by the classifier (green).

min-cost paths are said to be a hypotheses. Each hy-
pothesisk with lengthNk can be formalized as a list
of coordinate triplets

pk = 〈〈xk1, yk1, sk1〉, . . . 〈xkNk
, ykNk

, skNk
〉〉 , (9)

i.e. path in 3D space. DP algorithm define the func-
tionH(Y ) ) from Equation 8 as:

H(Y ) =

{
− sgn(H(Tγ(Y ))) Y is a ridge,

0 otherwise,
(10)

The DP algorithm, starting at each image edge and
terminating at the opposite edge, provides for any
point Y in the scale-space the four min-cost paths
Fm(Y ) ,m = 1 . . . 4 in four directions. For the sake

of simplicity, the arguments are omitted in the rest of
the paper. The hypothesisk consists of a concatena-
tion of the two cheapest min-cost pathsFm

k , Fn
k and

its supportF ∗
k fulfils

F ∗
k = min

m, n=m+1
(Fm

k + Fn
k ) , m = 1 . . . 3 . (11)

3.3.2 Hypotheses Combination

100

200

300

400

500

600

Figure 5. The accumulator of hypotheses uncovers the fi-
nal dominant curvilinear structure. The weak hypotheses
disappeared due to scaling factor.

We use an accumulatorA for hypotheses combi-
nation. The voting procedure for triplets in hypoth-
esispk works as follows

A(xks, yks, sks) = A(xks, yks, sks)+F ∗
k /Nk . (12)

Each hypothesispk votes in particular positions
where it passes through. The strength of vote reflect
its support proportionally. The accumulator high-
lights the frequently passed positions as depicted in
Figure 5.

3.3.3 Dominant Linear Structure Extraction

Figure 6. The extracted CLO (green). The width of ex-
tracted structure corresponds to the ridge scale (red).

The final dominant curvilinear structure is ex-
tracted as a hypothesis that corresponds to the po-
sition with the highest support inA. We use DP with
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functionH(Y ) from Equation 8 formulated as

H(Y ) = A(i, j, s) . (13)

The extracted dominant linear structureL∗ is de-
picted in Figure 6. TheF ∗

L∗ indicates the quality of
solution.

The main contributions of joint accumulator and
DP are their high robustness to false negative output
of the ridge classifier and non uniform distribution
of positively classified ridges along the object. Both
these scenarios can be affected by occlusions or shad-
ows.

4. Experiments

We focused our experiments on highway extrac-
tion as a well defined concept which is easy to obtain.
We created own dataset from the Google satellite im-
ages [1].

4.1. Classifier Learning

0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

FP

F
N

 

 

Haar
HoG

Figure 7. False detection ROC curve with parameterΘ ∈
〈−10; 10〉 (classifier threshold) for both Haar and HoG de-
scriptors on the test data.

We learnt the Gentleboost classifier using6 · 103
positive and more than30 · 103 negative samples (we
used sample split70% for learning, 30% testing).
The samples were gathered approximately along10
km of highway. Each sample was described either by
104 Haar features or8.2·103 HoG features. Haar fea-
tures were generated randomly, HoG features were
generated hierarchically. Learning phase selected
200 features and formed the strong classifier. Fig-
ure 7 shows the ROC curve of false detection rate for
different values of classification thresholdΘ. The
Haar descriptor achieves higher performance on test
data and is used for further experiments. We believe
that main limitation of the HoG discriminative power
is the design of kind of hierarchical feature genera-
tion. Figure 8 shows the most discriminative features
on the test samples. The formed strong classifier gen-

Figure 8. The most discriminative features on the positive
test samples.

erated0.00% error on training data and0.13% on test
data.

4.2. Highway Extraction

We tested the algorithm on approximately500
positive images (P) (approx. 110 km of highway)
and around400 negative images (N ) with neither
highways nor other roads. The verification result
considers both quality and annotation. Let theRL∗

depicts the ratio of extracted path which corresponds
to given annotation.

We defined the quality thresholdΘF and ratio
thresholdΘR and decision strategyD(x,Θ)

D(x; Θ) =

{
1 x ≥ Θ ,
0 otherwise .

(14)

Table 1 describes the evaluation principle.
Figure 9 shows an ideal result that the whole ex-

Image D(−FL∗ ,ΘF ) D(RL∗ ,ΘR) decision
P 1 1 TP
P 1 0 FP
P 0 0 FN
P 0 1 FN
N 1 0 FP
N 1 1 −
N 0 0 TN
N 0 1 −

Table 1. Evaluation schema for extracted objectL∗. The
decisions T(F) P denotes true (false) positive and analogi-
cally for true (false) negative. The− stands for infeasible
configuration.

tracted structure corresponds to the annotation (i.e.
lies within the annotation).

The thresholdΘF = 110 was chosen experimen-
tally so it minimizes the error on test data for fixed
ΘR = 0.1. TheΘR is not really strict because the
algorithm can not classify the ridges near to the im-
age boundaries. We described this unreachable area
as a margin on the image boundaries. Assuming ar-
bitrary ridge orientation, width margin is defined by
the radius of outer circle of a certain patch. Since the
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Figure 9. The extracted structureL∗ (green) with annota-
tion (red).

classification is not possible, the linkage algorithm
can behave abruptly at the same place. The exam-
ple of proposed behaviour demonstrates Figure 10.
Established scale-space consists of40 layers and was

100
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400
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Figure 10. The extracted structureL∗ (green) with annota-
tion (red) with abrupt behaviour on the image boundaries.

able to detect the structure4 − 40 pixels wide. The
scale change penaltyα(·, ·) was set to0.0 for no
change,0.3 for a one level change and∞ otherwise.
The orientation change penaltyβ(·, ·) denotes the ab-
solute value of cosine distance between ridge direc-
tions. The number of hypotheses for the accumulator
was chosen experimentally to100. Using the pro-
posed methodology we achieved the93.07% of cor-
rect classification on our test data.

We studied the influence of the ridge classifier ac-
curacy on the global results. We simulated this by
reducing the number of weak classifiers. Table 2 pro-
vides the results.

Although the accuracy for small number of weak
classifiers is not precise, still the classifier presence
play an important role in overall accuracy.

In our test data consisting of640×640 px2 images
there are approximately3 · 105 − 5 · 105 detected
ridges using the scale space ridge detector. With-
out the preprocessing step, this number increases
rapidly. Assuming the discrete orientation with pre-
cision1 degree, then the ridge classifier have to clas-
sify ∼ 2.95 · 109 patches. We did not study the

No. of weak cl Trn error Tst error Accuracy
0(+) − − 34.67

2 7.93% 10.80% 80.48%

4 5.47% 4.90% 85.48%

8 3.38% 2.47% 85.95%

200 0.00% 0.13% 93.07%

Table 2. The accuracy of the method with respect to the
accuracy of the classifier. Trn / Tst stands for error on
the training and testing data respectively. The symbol(+)
means that all classifier inputs invoke a positive output.
The− is used for undefined numbers.

real-time implementation of scale-space ridge detec-
tor, but we believe it still outperforms the exhaustive
search.

The results also approved the importance of link-
age algorithm and its ability to deal with the either
inaccuracy of the first two stages or presence of oc-
clusions and shadows.

We developed a prototype of the above described
concept, which is far from the real application and
thus no relevant run time information is available
yet. The most time consuming part of the pipeline
is the ridge classification 3.2 which requires the ro-
tationally and scale normalized samples. The most
memory consuming part is the scale-space establish-
ment 3.1.

5. Conclusion

We presented an autonomous method for the de-
tection of CLO in aerial images. We sequentially
prune the space of all curvilinear objects hypotheses
and thus make the method convenient for the UAV
with limited resources. The objective of this early ex-
periments proposed in this paper was to confirm the
validity of the method design. We proved the method
validity by introducing the accuracy measure. Using
the best configuration we achieved overall accuracy
93.07%.

The future work has to be focused both on deeper
testing of proposed method (considering more types
of objects in the scene, other object types, etc.) and
run time optimisation. The possibilities of real-time
ridge detector and ridge classification has to be stud-
ied intensively. The bottlenecks of these stages are
scale-space establishment and sample normalization
for classification. The most suitable way how to
avoid the scale normalization is to use the scalable
features. The rotated features are not suitable for this
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application, since there exist no fast approaches for
computation of integral image rotated by arbitrary
angle. The better way seems to be a learning of sev-
eral classifiers, each one used for fixed orientation.
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Abstract. This work deals with recognition of hand-
drawn graphical symbols in diagrams. We present
two contributions. First, we designed a new com-
posite descriptor expressing overall appearance of
symbols. We achieved rather favorable accuracy in
classification of segmented symbols on benchmark
databases, which is 98.93% for a database of flow
charts, 98.33% for a database of crisis management
icons, and 92.94% for a database of digits. Second,
we used the descriptor in the task of simultaneous
segmentation and recognition of graphical symbols.
Our method creates symbol candidates by grouping
spatially close strokes. Symbol candidates are clas-
sified by a multiclass SVM classifier learned on a
dataset with negative examples. Thus, some portion
of the candidates is filtered out. The joint segmenta-
tion and classification was tested on diagrams from
the flowchart database. We were able to find 91.85%
of symbols while generating 8.8 times more symbol
candidates than is the number of true symbols per
diagram in average.

1. Introduction

The proliferation of tablets or tablet PCs implies
the demand for algorithm allowing interface by hand-
writing or hand-drawing. The attention of researches
is recently given on graphical representation of hu-
man thoughts, e.g. diagrams. One of the most com-
mon diagram for various branches is a flowchart. It
is used to describe a general algorithm or a process.
The flowchart is composed of boxes connected by ar-
rows and text, which can be inside the boxes or can
label the arrows. See the example of flowchart in Fig-
ure 1. To recognize a flowchart fully, we have to rec-
ognize all symbols correctly, find relations between

Figure 1. Example of a flowchart from the FC database.

them, and also recognize a text.
Each diagram recognizer must perform following

six stages [4]: (1) early processing - noise reduction,
de-skewing, etc., (2) segmentation of strokes into iso-
lated symbols, (3) symbol recognition, (4) identifica-
tion of spatial relationships among symbol, (5) iden-
tification of logical relationships among symbols, (6)
semantic interpretation. This paper describes our ap-
proach to perform steps (2) and (3) of the diagram
recognition pipeline. We allow multiple candidates
for the symbols to be created. The segmentation
phase thus does not make a final decision. This is
left at the next stages performing structural analy-
sis. We follow the structural construction paradigm
proposed by Schlesinger and Hlaváč [13]. We chose
flowcharts as diagrams of our interest and we used
FC database [1] for training and verification. It con-
tains 327 diagrams drawn by 35 users and there are
4 780 symbols. The database is divided into a train-
ing dataset (200 diagrams, 2 919 symbols) and a test
dataset (127 diagrams, 1 861 symbols). The dia-
grams are stored in inkml file format, where are in-
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dividual strokes and symbols defined. We recog-
nize just graphical symbols and text must be pro-
cessed in different way. Therefore, the text is fil-
tered out from the diagrams. In practice, this can be
done using various text / non-text stroke classifiers.
The state-of-the-art methods work with a high accu-
racy [3], [17], [7], [11].

Symbols segmentation was researched by many
people. For example, Kara and Stahovich [8] pre-
sented an approach where arrows are detected first
and they are stated immediately as a ground truth.
Then the rest represents separated symbols. Peter-
son et al. [12] came with two-step stroke grouping
based on a single stroke classification followed by
clustering of strokes within the classes. Although the
results are promising, there is still much work to do
to solve the problem robustly. There exist algorithms
for graphical symbols recognition, which classify al-
ready segmented symbols. These algorithms are of-
ten based on HMM or MRF [2], [18]. Some algo-
rithms work with more complex graphs representa-
tions [9]. In some cases, it is beneficial to combine
more approaches together to achieve higher accu-
racy [14]. The results vary with respect to the dif-
ficulty of the problem, i.e. how complex the symbols
are, what is the quality of databases etc. We present
an approach, in which the segmentation and clas-
sification are performed simultaneously. The seg-
mentation is not final and we rather generate sym-
bol candidates for the next stage of the recognition
pipeline. Therefore, we call it pre-segmentation. The
approach is simultaneous in the sense that the pre-
segmentation is a result of classification of selected
groups of strokes. This is the main advantage in com-
parison with the state-of-the-art methods. They do
hard decisions in symbol segmentation step or rather
focus on recognition of already segmented symbols.

The rest of the paper is organized as follows. The
method of segmentation by classification is described
in Section 2. Our symbol descriptor is defined in
Section 3. An evaluation of experiments on the FC
database and experiments on additional databases are
given in Section 4 to show the generality of the de-
scriptor. Finally, our conclusions are presented in
Section 5.

2. Pre-segmentation by Classification

This section describes our approach how to group
strokes of a flowchart into isolated symbols and how
to classify them. The main idea is that we create sym-

bol candidates by grouping single strokes together
followed by classification of all the candidates. We
assume there is no stroke which is common to two
or more symbols. This assumption holds in most of
the cases. Our goal is to generate as few candidates
as possible and miss as few true symbols as possible
at the same time. The generated symbol candidates
are supposed to be filtered in the next stages of the
pipeline using information about relations between
them.

2.1. Strokes Grouping

First, we take all single strokes as a symbol can-
didates of size 1. Then, we create iteratively new
symbol candidates of size n by adding a single, spa-
tially close, stroke to symbol candidate of size n− 1.
It can be seen in the histogram of true symbol sizes
in the FC database (see Figure 2), that it is suffi-
cient to create symbol candidates of maximal size 5.
Two strokes (or a stroke and a group of strokes)
are spatially close if the distance between two clos-
est points is below a threshold, which is defined as
distThresh = k ·Dmed, where Dmed is a median of
lengths of diagonals of bounding boxes of all single
strokes in a diagram. The usage of the Dmed makes
the distThresh independent of the overall size of the
diagram, which differs due to the different writer’s
conventions or different resolution of used devices.
We chose the value of k to be 0.35 empirically (see
Figure 3).

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500
Histogram of Symbol Sizes

Size of the Symbol

N
um

be
r 

of
 S

ym
bo

ls
 in

 th
e 

D
at

ab
as

e

Figure 2. Histogram of Symbol Sizes.

2.2. Classification

The classification of symbol candidates is based
on a descriptor which is described in Section 3. We
use a multiclass classifier implemented as an instance
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Figure 3. Result of the experiments on the whole FC
database to obtain optimal value of the k coefficient. (a)
shows the growth of the accuracy with growing k and (b)
shows the growth of the number of symbol candidates.
The choice of optimal k is a tradeoff.

of a structured output SVM learned by BMRM algo-
rithm [16]. A logistic regression is fitted on the clas-
sifier response to obtain a posterior probability that
a symbol candidate belongs to the class. We used
Statistical Pattern Recognition Toolbox for Matlab
(STPRtool) [5] for this.

We have seven basic classes in our training data:
arrow, connection, data, decision, process, termina-
tor, and no match. Examples of objects from these
classes are shown in Figure 4. The last class repre-
sents symbol candidates with no meaning. It is very
important to prevent false positive detections. The
training data is extracted from the training diagrams
of the FC database. We find all symbol candidates
of maximal size 3 in a way described above. The la-
bels are taken from the annotated database for sym-

bol candidates which represent true symbols. The
rest of the candidates has no meaning and thus gets
the label no match. In total, we have 32 064 sym-
bols in the training dataset, where are 1 474 examples
of class arrow, 143 of connection, 337 of data, 248
of decision, 477 of process, 240 of terminator, and
29 145 no match.

Symbols of the same class may look very differ-
ently yielding different descriptors. It is the most
common for classes arrow and no match (see Fig-
ure 4). Therefore, we cluster symbols of these classes
into several clusters according to their descriptors.
We use 10 clusters for arrows, 30 clusters for the
class no match and two clusters for the rest. We de-
fine a loss function which gives higher penalty when
a symbol is classified as no match. Specific values
of the loss function are shown in Table 1. Classifica-
tion into a different cluster of the same class does not
count as an error. Thus, the table defining the loss
function is simplified.

arr. conn. data dec. proc. term. no m.
arr. 0 2 2 2 2 2 1

conn. 2 0 2 2 2 2 1
data 2 2 0 2 2 2 1
dec. 2 2 2 0 2 2 1
proc. 2 2 2 2 0 2 1
term. 2 2 2 2 2 0 1
no m. 100 100 100 100 100 100 0

Table 1. Definition of the loss function. Each column rep-
resents a true class.

We used the cross-validation with 5 folders to ob-
tain the optimal value of the regularization constant
for the training. The data was divided into five fold-
ers w.r.t. their classes and four folders was used for
training and one for testing. We chose the constant to
be 10−7 according to the cross-validation test error.
Then we used the constant and learned the classifier
on the whole train dataset. Results of the classifier on
test diagrams of the FC database are shown in Sec-
tion 4.

3. Descriptor

As we have shown in Section 1, there are many
ways how to describe a hand-drawn graphical sym-
bol. Flowcharts are composed of very simple and ge-
ometrically describable symbols such as rectangles,
circles, etc. See Figure 1. Those symbols, of course,
may change the size arbitrarily. Moreover, they can
be drawn with a different number of strokes in arbi-
trary order. Therefore, a descriptor which requires an
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Figure 4. Examples of symbols from each of the classes taken from the database.

exact order of strokes would imply unnatural require-
ments on the user. For the purpose of recognizing
graphical symbols contained in a flowchart, we pro-
posed a new descriptor. Although, it is designed for
flowcharts it can be used to describe arbitrary graph-
ical symbol.

3.1. Descriptor Components

Our descriptor is composed of three components.
The first one is the normalized histogram of dis-
tances between points. The second one is the nor-
malized histogram of angles given by three points,
and the last component is the histogram of small sub-
strokes (compositions). Each of those components
does not have power to fully describe the overall ap-
pearance of a given symbol. However, their com-
bination showed to be discriminative enough. The
dimension of the whole descriptor is 90 which is a
concatenation of its three components with dimen-
sion 32, 16, and 42, respectively.

As we mentioned before, a symbol may be com-
posed of many strokes. Therefore, we take points of
all strokes and ignore gaps between endpoints. Let us
denote the sequence of points representing a symbol
P = {p1, p2, . . . , pn}.

3.1.1 Histogram of Distances Component

The distance between each possible pair of points on
x-axis (Δx) and y-axis (Δy) is computed and these
values are assigned to corresponding histograms.

This descriptor component is composed of four his-
tograms with 8 bins each, where two histograms are
allocated for Δx and two histograms for Δy. The
Algorithm 1 shows how to assign Δx to its two cor-
responding histograms. The approach is analogous
for Δy. All histograms are finally normalized by the
number of pairs of points

(
n
2

)
.

Data: P , Δx, lowHist , highHist
Result: Increment certain bin in either lowHist

or highHist
lowThresh = maxi,j,i �=j,j−i=1 |pi.x− pj .x|;
highThresh = BoundingBox (P ).width;
if Δx < lowThresh then

binSize = lowThresh/8;
bin = Δx/binSize;
lowHist [bin] = lowHist [bin] + 1;

else
binSize = highThresh/8;
bin = Δx/binSize;
if bin > 7 then

bin = 7;
end
highHist [bin] = highHist [bin] + 1;

end
Algorithm 1: Assignment of a Δx value to the cer-
tain histogram.
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3.1.2 Histogram of Angles Component

The second component expresses the curvature of the
symbol. Triplets of points pi, pj , pk are taken such
that j − i > 1, k = �(i+ j)/2�. For all these triplets
we compute the angle

α = arccos
−−→pjpk · −−→pkpi

‖−−→pjpk‖ · ‖−−→pkpi‖
. (1)

Values are mapped to 16-bin histogram the standard
way. The size of the bins is π

16 . The histogram is
normalized by the number of angles

(
n−1
3

)
.

3.1.3 Histogram of Compositions Component

The last component is inspired by the work of
Tabernik et al. [15], in which the histogram of
compositions (HoC) was presented as a low-level
image descriptor. We used the similar principle
in building a low-level stroke descriptor. First,
angles between vectors given by two consecutive
points and x-axis are computed. These angles
are components of the first layer. All pairs of
consecutive components of the previous layer are
combined to create new compositions of the next
layer. The compositions carry only information
about the angles. The first two layers are visualized
in Figure 5. Empirically, we chose to quantize the
first level components to six values in the first layer
and to use two layers. Higher number of both,
components of the first layer and number of layers,
leads to the lower accuracy because the descriptor
would be too specific and less tolerant to different
styles of drawing. Therefore, this component of
the descriptor has dimension 42 since it contains
the 6-bin histogram of first layer components and
the 36-bin histogram of second layer components.
When the histograms are computed, each angle is
linearly interpolated into two neighbouring bins.
Therefore, each first layer component contributes to
two bins of the corresponding histogram and each
second layer composition contributes to four bins.
Both histograms are normalized to sum into 1.

It might be computationally expensive to compute
the descriptor since all possible pairs of points are
considered in the first two components. In the situ-
ation, in which the symbols are more complex (con-
sist of higher number of points), it is possible to skip
some pairs. We were able to use only 50% of pos-
sible pairs (leads to double speedup) without loss of

the accuracy in our experiments.

������� �������

Figure 5. Visualization of compositions in two layers.

4. Experiments

We present our results achieved with the descrip-
tor and the SVM classifier. First, the results of exper-
iments with segmentation and classification of entire
diagrams in FC database are presented. Later, we
show results of experiments with the classification
of segmented symbols from various databases, which
demonstrate the universality of our descriptor.

We also measured how fast the computation of
our descriptor is for the segmented symbols from the
FC database. The symbols consist of 76.32 points
in average and the computation time was in average
1.83 ms per symbol. The code is implemented in C#.
We ran it on a standard tablet PC Lenovo X61 (Intel
Core 2 Duo 1.6 GHz, 2 GB RAM) with 64-bit Win-
dows 7 operating system.

4.1. Recognizing Diagrams

We tested our learned classifier on the testing di-
agrams of the FC database. The goal was to find
as many true symbols as possible while keeping the
number of symbol candidates as low as possible.
The database contains 127 testing diagrams with 14.7
symbols in average. The strokes grouping algorithm
is able to find 99.7% of the symbols in average while
generating 368.9 symbol candidates in average. All
symbols candidates were classified and three possi-
bilities with the highest posterior probability were
taken for each symbol candidate forming the set of
classification results. Classification results with la-
bel no match were removed. Results with posterior
probability lower than 0.001 were removed as well.
A possible post-processing step is to set a maximal
number of classification results for each stroke and
remove excessive ones with the lowest probability.
The results can be found in the Table 2. Without re-
moving excessive classification results, we can ob-
tain accuracy 91.9% with 129.2 classification results
in average. How many symbols from each class were
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not recognized shows Table 3. The class arrow has
the highest number of unrecognised symbols. It is
because an arrow can have different shapes (different
head, direction, etc.) and thus the recognition is more
difficult. Achieved number of classification results is
acceptable for the next step of the pipeline.

max. #candidates / stroke #candidates accuracy
5 48.31 86.20%
8 66.25 88.65%

10 75.54 89.45%
12 83.30 89.89%
15 92.97 90.40%
∞ 129.17 91.85%

Table 2. Dependence of the average number of generated
symbol candidates and the accuracy on the maximal num-
ber of symbol candidates per stroke.

arrow connection data descision process terminator
72 0 14 18 24 32

Table 3. Numbers of unrecognised symbols from each
class (out of all 1 861 symbols).
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Figure 6. Histogram of numbers of unrecognised symbols
in the diagrams.

Although the accuracy is not very high, it can
be seen in Figure 6 that there are many diagrams
(around 45%) where the accuracy 100% was reached.
Those diagrams were drawn by users with nice draw-
ing style, which is easily readable. On the other hand,
diagrams with very low accuracy are sometimes very
hardly readable even by human. In some cases we are
facing bad annotation too. Therefore, we consider
the results encouraging. Moreover, we expect that
the recognition system will be providing a tool for
a quick correction of misclassifications by the user.

While the number of misclassifications is low (one
or two) the system should be still effectively usable.

4.2. Classification of Segmented Symbols

We tested our descriptor on different databases of
hand-drawn graphical symbols to get an idea how
discriminative it is and for what kind of symbols it
can be used. The symbols were segmented. In all
cases, we used SVM classifier trained by BMRM on
training dataset of the database and tested the clas-
sifier on the test dataset. We used cross-validation
with 5 folders on each training dataset to obtain the
optimal value of the regularization constant. We used
zero-one loss function in all cases.

First, we evaluated the descriptor on the seg-
mented symbols of the FC database. There are
6 classes and there are 2 919 symbols in the train
dataset and 1 861 in the test dataset. Since the sym-
bols are already segmented, we do not have to define
the class no match. The accuracy was 98.9%.

The second database, on which we tested the de-
scriptor, was NicIcon database of handwritten icons
for crisis management by Niels et al. [10], which
consists of 15 372 symbols (9 212 in the train dataset
and 6 160 in the test dataset) of 14 classes (see Figure
7). We performed the writer independent experiment
and obtained the accuracy 98.3%. It is way better
than the result of Niels et al., which is 96.5%.

Figure 7. Symbol classes in the NicIcon database.

The last database was Unipen database of hand-
written digits [6] which contains 4 990 digits (3 489
in the train dataset and 1 501 in the test dataset).
In this experiment we obtained the accuracy 92.9%
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which is significantly lower than in previous cases.
The main reason probably is the fact that our descrip-
tor is based on histograms and digits are very simple
symbols consisting of only few points. Therefore,
the histograms in our descriptor are rather dense.

5. Conclusion

We presented a new composition descriptor for de-
scribing hand-drawn graphical symbols. We trained
the multiclass SVM classifier on various databases
of graphical symbols, where the symbols were de-
scribed with our descriptor. The result is outstand-
ing for databases of more complex symbols. We
achieved the accuracy 98.9% and 98.3% for FC
database and NicIcon database, respectively. Experi-
ments also showed that a poorer result is achieved on
symbols consisting of just few points, which is the
case of Unipen database of digits, where we achieved
the accuracy 92.9%.

We used the descriptor to recognize symbols of
flowcharts among symbol candidates, which are gen-
erated by strokes grouping. We generated the sym-
bol candidates by grouping spatially close strokes to-
gether. This led to a segmentation, which contains
a lot of candidates representing no symbol. There-
fore, we learned the multiclass SVM classifier with
negative examples. Moreover, we showed how the
clustering of descriptors from the same class leads to
better results. We were able to find 91.9% of the sym-
bols in the FC database while we generate in average
8.8 times more symbol candidates than the number
of symbols in a diagram.

In the future work, we plan to use the output of
the segmentation as an input for the next stage of the
pipeline, where relations between symbol candidates
will be found. The goal will be to keep only the sym-
bol candidates, which form a correct flowchart. Pre-
liminary results based on modelling of relations and
following optimization are promising and show that
the number of candidates is not too large. We also
plan to test the descriptor on more databases and pos-
sibly improve it to be more specialized on flowcharts,
especially on filtering of the negative examples.
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Abstract. This article focuses on the detection of a
brain tumor location in magnetic resonance images.
The aim of this work is not the precise segmentation
of the tumor and its parts but only the detection of
its approximate location. It will be used in future
work for more accurate segmentation. For this rea-
son, it also does not deal with detecting of the im-
ages containing the tumor. The algorithm expects a
2D T2-weighted magnetic resonance image of brain
containing a tumor. The detection is based on lo-
cating the area that breaks the left-right symmetry of
the brain. The created algorithm was tested on 73
images containing tumor, tumor with edema or only
edema. These pathological structures had various
sizes and shapes and were located in various parts
of the brain.

1. Introduction

The detection of brain tumors is generally a more
complex task than the detection of any other im-
age object. Pattern recognition usually relies on the
shape of the required objects. But the tumor shape
varies in each case so other properties have to be
used. The general properties of healthy brain are
widely used as a prior-knowledge. One of them is
the probability of tissues locations using probabil-
ity brain atlas, which is used e.g. in [7]. Another
widely used knowledge, which is used in this arti-
cle, is the approximate left-right symmetry of healthy

brain. This approach is also used e.g. in [3] [4] [5].
Areas that break this symmetry are most likely parts
of a tumor.

There are also many other methods used for tumor
extraction, but they usually rely on machine learn-
ing algorithms such as SVM used e.g. in [6]. For
this purpose, many algorithms need to have patient-
specific training dataset. This makes the method
more demanding for the experts. These methods
usually rely on other contrast images, such as T1-
weighted contrast enhanced images [10]. Fully au-
tomatic exact segmentation of the tumor is still an
unsolved problem, as the accurate image segmenta-
tion itself. The method proposed in this work is less
accurate than many other methods used nowadays,
but it is fully automatic and it is used only for the
detection of the brain tumor location for subsequent
segmentation, which will be the aim of future work.

The big advantage of the symmetry approach is
that the process does not need any intensity normal-
ization, human work etc. The only step that needs
to be done is the symmetry axis detection. Another
advantage is its independence on the type of the tu-
mor. It can correctly detect anomalies in images
containing a tumor, a tumor with edema or only an
edema, which is an abnormal accumulation of the
fluid around the tumor and is present only with par-
ticular types of tumors.
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2. Proposed Method

The input of the whole process is a stand-alone 2D
T2-weighted magnetic resonance image containing a
tumor. It means that no neighbor slices are consid-
ered. The reason for T2-weighted image is the visi-
bility of tumors in this type of image.

The tumor detection process consists of several
steps. The first step is the brain extraction followed
by cutting the image. In this cut image, the asym-
metric parts are detected and then the decision which
half contains the tumor is made. The detection of the
symmetry axis is skipped because the input data were
aligned in previous processing. The only assumption
of proposed method is a vertically aligned head. For
the purpose of detecting the symmetry axis, the well
performed algorithm works and is described in [8].
Addition of this method as a preprocessing step will
be one of the aims of the future work.

2.1. Brain Extraction

The extraction of skull is based on technique men-
tioned in [2] and is done by the well-known method
called Active contour, or Snakes [9]. At first, the
smallest rectangle, whose sides are parallel to the im-
age sides, surrounding the skull are detected. The
initial mask is set to this rectangle to be sure that the
whole skull is inside the mask. Then the algorithm is
executed.

Assuming that the head is approximately symmet-
ric, the symmetry axes is set to be parallel to the ver-
tical axis and to divide the detected rectangle into two
parts of the same size.

The results of the segmentation algorithm is not
only the border of the skull, but also the border of the
brain. This border is used to extract only the brain
instead of the whole skull as in [2]. Only the seg-
ment that is located in the center is extracted. Be-
cause in some cases the brain segment can be joined
to the skull segment but not symmetrically, another
processing has to be done. The operation of logi-
cal conjunction is performed with this segment and
its symmetric flipped image. This causes that points
that are not on one side will not be considered also
on the other side. The resulting mask is applied to
the input image. The result of the brain extraction is
shown in Figure 1.

The described process approximately extract the
brain and set the symmetry axis in center of the new
image. Except the brain, in cases where eyes are
present, they are also inside the brain mask because

Figure 1. Extracted brain.

there is usually not clear border between them and
brain.

Even if the mask is not so precise, the future re-
sults are not so influenced because the asymmetries
caused by tumor are much higher.

After the extraction of the mask, the image is fil-
tered by a Gaussian filter of size 5x5 to make the par-
ticular parts more homogeneous. The resulting mask
is then applied to this filtered image followed by cut-
ting the image because in parts outside the mask, the
symmetry does not need to be checked.

2.2. Asymmetry detection

The main part of this work is the detection of sym-
metric anomalies, which are usually caused by brain
tumor, whose detection is the main purpose of this
article. The first step of this process is dividing of
the input image into two approximately symmetric
halves.

Assuming that the head is not rotated and the skull
is approximately symmetric, the symmetry axis is
parallel to vertical axis and divide the image of de-
tected brain into two parts of the same size.

A squared block, with the side length computed as
one quarter of the longer side of the input image, is
created. This size is suitable for the detection of both
small and large tumors. The algorithm goes through
both halves symmetrically by this block. The step
size is smaller than the block size to ensure the over-
lapping of particular areas. These areas are compared
with its opposite symmetric part. In this case, the step
size of one sixteenth of the block size was set.
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Comparing is done by Bhattacharya coefficient.
[1] Normalized histograms with the same range are
computed from both parts and the Bhattacharya coef-
ficient is computed from these histograms as follows
[1]:

BC =
N∑

i=1

√
l (i) · r (i), (1)

where N denotes the number of bins in the histogram,
l and r denote histograms of blocks in left and right
half, respectively.

The range of values of Bhattacharya coefficient is
〈0, 1〉, where the smaller value, the bigger difference
between histograms. For the next computation, the
asymmetry is computed as:

A = 1−BC. (2)

This asymmetry is computed for all blocks. The
global maximum is detected. This is the most asym-
metric block and most likely contains the tumor.
Since the tumor can be larger, the initial size of the
block, also the blocks with asymmetry bigger then
0.5· max(Asym), are extracted. This threshold was
set experimentally as a compromise between the size
of the area and the asymmetry of areas. When the
threshold was decreased, the resulting areas were too
large, while for higher thresholds, some parts of the
tumors were located outside the area.

The output of this computation is a both-sided
mask containing the most asymmetric parts. This
mask is slightly enlarged by morphological operation
dilation for the case that some part of the tumor could
be outside the region. This mask is applied to the in-
put image.

The whole cycle is repeated twice for this new im-
age but with smaller block. Height and width of the
block is iteratively reduced to the half of the previ-
ous value. So the new size of the block is one quar-
ter and one sixteenth of the initial size, respectively.
The purpose of smaller areas is the more precise de-
tection of asymmetry. This approach corresponds to
multi resolution image analysis described in [11].

The resulting both-sided mask is again applied to
the input image and this image is sent to the output
of the detection process.

The results of particular steps are shown in the
Figure 2. The input image size in this example was
256x256, so the Figures 2(a), 2(b) and 2(c) demon-
strate detection of the most asymmetric areas for the

(a) (b)

(c) (d)

Figure 2. Asymmetries detection: (a) the first step for
block size of 64x64 pixels, (b) the second step for block
size of 32x32 pixels, (c) the third step for block size of
16x16 pixels, (d) the result of the asymmetries detection,

block size of 64x64, 32x32 and 16x16 pixels, respec-
tively. As can be seen, searching for asymmetric
parts is done only in asymmetric areas provided by
previous step.

2.3. Locating the tumor

The detection of asymmetric areas does not ex-
plicitly locate the position of the tumor. There are
still two possible locations of the tumor - right or
left side. Two methods, for deciding in which part
the tumor is, were tested. First of them is the prior-
knowledge of the physical properties of brain tissues.

In T2-weighted images, tumors and edemas ap-
pear hyperintense [13]. This means that the pro-
duced signal is stronger than the signal of the white
matter, in which tumors are located in most cases.
This method is based on computation of the mean
of the region. Tumors located near ventriculus could
cause problems, because ventriculus produces even
stronger signal. This could lead to misclassification.

The second possibility how to locate the tumor is
to find it in the same way as asymmetries. Normal-
ized histograms are computed from both areas and
also from the rest of the brain. Histograms of both
areas are compared with the rest of the brain using
Bhattacharya coefficient. Area with less similar his-
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Figure 3. Located tumor.

togram is labeled as the one containing the tumor.
Both methods were tested. The first one produces

slightly better results, the quantitative results are de-
scribed in the next section.

The result of the tumor location for the input im-
age from Figure 2(d) is shown in Figure 3. In this
figure, the result image of the whole algorithm is
demonstrated.

A problem occurs if the tumor appears in both
halves of the brain. Since the tumor is not symmetric
it is likely detected as asymmetric area even in this
case. But the locating step relies on comparing both
sides, therefore only one of them can be labeled as a
pathological.

3. Results

The algorithm was tested on 73 T2-weighted im-
ages from 13 different patients. Every image con-
tained a tumor, a tumor with an edema or only the
edema. Various shapes, locations, and sizes of these
pathological areas and various image resolution were
tested. Results are shown in Table 1. Results are de-
scribed by number of cases and by percentage of the
total number of tested images.

At first, the evaluation of the detection of sym-
metric anomalies will be described. In 1 case, the
anomaly detection failed. In this particular image,
only the edema was present and it was hardly visi-
ble even for human. At least 75% of the patholog-
ical area was detected in 72 cases. In 8 cases, the
pathological area was found, but the extracted area
was too large compared to the tumor, or the tumor

Result Num. of cases Percentage
Number of images 73
Incorrect anomaly
detection

1 1.37%

Detected main part
of path. area

72 98.63%

Too large area 8 10.96%
15-20% outside 9 12.33%
Correct anomaly
detection

55 75.34%

Correct area
extraction

52 71.23%

Table 1. Total results.

was not in the approximate center of this area. The
example of this result is shown in Figure 7(b). In 9
cases, the pathological area was found, but from 15%
to 25% of it was situated outside the extracted area.
This includes also 3 images, where the pathological
area was located in both halves. Such case is shown
in Figure 7(a). In only 2 of these 9 cases, more than
20% of the pathological area was located outside the
extracted region. It means that in 17 cases, the re-
sult of anomaly detection was not totally incorrect,
but it was not so accurate. In 55 cases, the anomaly
detection was correct.

After the anomaly detection process, the decision,
on which side the pathological area is, has to be done.
In this part, the case with incorrect anomaly detection
result is not considered. The region mean computa-
tion failed in 6 cases, from which 3 cases belongs to
the group of 55 correctly detected areas. So the total
number of correctly extracted area is 52. For localiz-
ing the tumor by comparing to the rest of the brain,
the computation failed in 8 cases, from which 6 cases
belongs to the group of 55 correctly detected areas.
So the total number of correctly extracted area is 49.

In Table 2, the results dependent on pathological
area size are shown. There were 8 small, 23 medium
and 42 large tumors. According to the assumption,
the most of tumors, whose part was situated outside
the extracted region, belongs to the group of large
pathological area, and the only totally incorrect result
belongs to the group of small pathological area.

A few results can be seen in the Figure 4, 5 and 6.
The area of the tumor location is surrounded by a red
line. One can see that the detected area is a little bit
larger than the pathological area itself. One reason is
the use of dilation at the end of asymmetry detection.
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Size of pathological area
Result Small Medium Large
Number of images 8 23 42
Incorrect anomaly
detection

1 0 0

Detected main part
of path. area

7 23 42

Too large area 2 4 2
15-20% outside 0 1 8
Correct anomaly
detection

5 18 32

Correct area
extraction

5 17 30

Table 2. Results dependent on tumor size.

This is done to locate the whole tumor and not only
a part of it. Another reason could be explained by
influence of the tumor in the neighbor parts of the
brain. Because the tumor is a tissue which is growing
during the time, it presses the other parts of the brain.
This creates the deformation and asymmetry not only
in the tumor location but also in the adjacent parts
and gradually in the whole brain.

Since the method is based on asymmetry detec-
tion, the problem appears when the tumor is located
in both halves or on the symmetry axis. In this case,
some parts of the tumor could be outside of the ex-
tracted area even if they are located in the half in
which the tumor was detected. The reason is that the
tumor located in both sides causes symmetry in these
parts, so for the algorithm it seems to be a healthy
tissue.

The part of the tumor located in the other half of
the brain is also outside the detected area. The exam-
ple of that problematic type of tumors is shown in the
Figure 7(a). This problem could be prevented by an
additional step that consists of checking whether the
border of the asymmetric area matching the symme-
try axis border, in other words if the both-sided mask
creates only one homogeneous region.

Compared to the approach proposed in [2], our al-
gorithm provides a region containing the most of the
tumor area, which will be necessary in the next pro-
cessing that is the aim of the future work. Moreover,
the results of our method are not simple rectangles,
but they can better capture the structure of the tumor.

From the principle, the proposed algorithm could
also detect multifocal tumors as separated regions
[14]. Unfortunately, this assumption was not tested,

because no images containing multifocal tumors
were present.

4. Conclusion and future work

The aim of this work was not the precise segmen-
tation of the brain tumor but only detection of ap-
proximate location of the tumor. This location could
be then used for more precise tumor extraction and
could make this task easier. The proposed method
correctly found the pathological area in 55 from 73
images. In other 17 cases, the main part of the patho-
logical area was detected, but the result was not so
precise. Tumors ware correctly extracted in 52 cases.

The future work will consist of the automatic sym-
metry axis detection and the more precise extraction
of the tumor based on current results.

The attention in the future work will also be paid
on automatic detection of the image containing the
brain tumor and searching for the relations between
neighbor slices. After that, the work will continue
with extending the method to 3D MR images.
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Figure 4. Examples of results (red area) compared to the
ground truth (blue area).
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(a)

(b)

(c)

Figure 5. Examples of results (red area) compared to the
ground truth (blue area).

(a)

(b)

(c)

Figure 6. Examples of results (red area) compared to the
ground truth (blue area).
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(a)

(b)

Figure 7. Less precise results (red area) compared to the
ground truth (blue area): (a) problematic type of tumor
located in both halves, (b) result evaluated as a large area.
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Czech Technical University, Faculty of Electrical Engineering

Center for Machine Perception
121 35 Prague 2, Karlovo náměstı́ 13, Czech Republic
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Abstract. A histogram-like model is suggested for
the representation of multi-dimensional distributions
such as RGB colors of subjects in tracking and seg-
mentation tasks. Unlike the normal 3-D histogram it
can be estimated from the limited amount of training
data without the need to reduce the precision of the
measured data. The proposed hierarchical histogram
model (HHM) is compared to the well known Gaus-
sian mixture model (GMM). The HHM is able to rep-
resent the underlaying distribution with the similar
quality as the GMM but it surpasses it in the speed of
parameters estimate and log-likelihood evaluation.
This makes it a suitable color model for the time crit-
ical tasks like real-time tracking.

1. Introduction

Many computer vision tasks, such as object track-
ing or segmentation, involve statistical modeling of
the individual subjects (which can be objects, back-
grounds, etc.) appearance. If the subjects have mul-
tiple distinct colors, which is in fact a very frequent
case, a multi-modal representation of their appear-
ance is required. Another question that must be con-
sidered when deciding about the appearance model
is the data dimensionality. A vast majority of the
contemporary cameras provide RGB images on their
output, thus a three dimensional model is requested.
Some authors simplify the task by converting the
original RGB measurements to one dimensional in-
tensity values, which can be sufficient in some tasks.
However, in this work, we are interested in a full 3-D
representation of the measured data.
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Figure 1. An example of the 2-D hierarchical histogram
built up from twenty 3-bit data samples: (1, 2), (2, 1),

(2, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 3), (3, 2), (3, 2),

(3, 2), (3, 3), (3, 3), (3, 4), (4, 2), (4, 2), (4, 3), (4, 5), (5, 4).
The left image shows how the sample counts are dis-
tributed among (split) bins with the bin splitting threshold
Kb = 10. The right image shows the probability density
corresponding to each leaf bin.

A very popular model used to represent 3-D RGB
color distributions is the Gaussian mixture model

P (x|ψ) =
∑

j∈M
ωjN(x|Σj , µj) , (1)

where x is a 3-D measurement, N is a multivariate
normal distribution, M is a number of the mixture
components and

ψ = (ω1,Σ1, µ1, . . . , ωM,ΣM, µM) (2)

are the model parameters, the number of which is
usually relatively low. Such a model is well suited
for tasks with a limited amount of training data. The
disadvantage of GMM lies in the computation com-
plexity of estimating the parameter vectorψ, which is
usually estimated using the K-means [4, 1] or (even
slower) the EM algorithm providing the maximum
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likelihood estimate of ψ [5, 3, 1, 6]. For time crit-
ical applications, even the calculation of the data
likelihood P (x|ψ) can be expensive, as it involves
a computation of exponentials and logarithms. An-
other disadvantage is that the number of components
M must be set a-priori or estimated together with ψ,
which can slow the whole process further down.

In one dimensional cases, the histograms are often
used when a quick model learning and PDF calcula-
tions are required. However, the use of histogram
becomes impractical with increasing number of di-
mensions, as the number of bins grows exponentially
with the number of dimensions. To obtain a good
density estimate using a traditional histogram in the
3-D color space, a huge amount of training data is
required (note that a full precision 3-D histogram of
8-bit color samples has 16.7 millions bins) or the spa-
tial precision must be sacrificed (e.g., cutting the pre-
cision down to 2-bits reduces the amount of bins to
64).

In this work, we propose a histogram-like model,
called hierarchical histogram model (HHM) that
compromises on the model size vs. the precision
dilemma by providing a fine density estimate in the
areas largely supported by the data and a coarse es-
timate in the areas with sparse data support. Hav-
ing this property, it can be used to model densities
in higher dimensional spaces, but at the same time,
it can be learned using the limited amount of training
data. The proposed HHM provides similar classifica-
tion performance as the GMM model, but surpasses
it in the speed of the parameters estimate and the like-
lihood calculation.

The HHM building process is similar to an octree,
which has been already used for color representation
in the past, e.g., in [7]. However, in [7] the tree is
built in a bottom-up fashion, starting from the leaves
and pruning the tree by merging the sub-trees that
collected a substantial amount of data. In our work,
we do the exact opposite: we try to achieve as fine
representation as possible by starting from the root
node and splitting the current leaves in the sub-trees
if they collected enough data.

2. The Hierarchical Histogram

Unlike a standard 3-D histogram with uniformly
distributed bins, the hierarchical histogram is repre-
sented by a hierarchical structure resembling an oc-
tree, which is built recursively using the following
rules:

1. At the top level, the data are sorted to eight bins
by the index composed of the most significant
bit of each color component of the RGB data
sample.

2. If a bin collects more than Kb samples, it is split
to eight sub-bins. The samples from the bin are
sorted to the eight sub-bins by the index com-
posed of the second most significant bit of each
color component of the data sample.

3. If a sub-bin collects more than Kb samples, the
splitting process is recursively repeated in the
same way, using the less significant bit, until the
least significant bit is reached.

Once all training data are sorted to the bins, the his-
togram is normalized to obtain a probability: a height
of each leaf bin (i.e., a bin that has not been split) is
calculated as the number of samples it collected di-
vided by the total number of samples and the area of
the bin. See Figure 1 for a 2-D example.

It might happen that there is not enough data
points to obtain a sufficiently good estimate of the
distribution even with the hierarchical histogram. For
this reason, the appearance is modeled using a mix-
ture of the uniform distribution on a color cube,

U (x) =

(
1

256

)3

, (3)

and the hierarchical histogram Z:

P (x|φ) =
Ku

Ku + Kz
U (x) +

Kz

Ku + Kz
Z (x |φ) ,

(4)
where Kz is the number of data samples used to learn
the histogram model and Ku is a user defined con-
stant controlling the weight of the uniform distribu-
tion in the mixture. x is a 3-D vector (three 8-bit
integers) representing a measured RGB color and φ
are parameters of the histogram (i.e., positions and
heights of the bins estimated from the training data).
In cases with insufficient amount of the training data
(Kz → 0), the mixture distribution (4) converges to
the uniform distribution while in cases with enough
training data (Kz � Ku), the uniform component U
becomes negligible.

2.1. The Adaptive Color Model

An adaptive version of the hierarchical histogram
can be used in applications that require sequential
learning of the color model. It differs from the model
described in the previous section in the following as-
pects:
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1. A weight is assigned to each data point. The
new points are added with the unit weight to the
model.

2. The weight of the data points that are already
in the model is decreased by a constant factor
each time the model is being updated using a
new batch of the training data.

3. The data points with a negligible weight are re-
moved from the model.

4. While (re-)building the histogram, the point
counts, including Kz , are calculated as sums of
the data points weights.

2.2. Alternative Color Models

The individual RGB color channels tend to be cor-
related in many situations. This is also true for our
data, see the strong diagonal structure of the proba-
bility densities in Figure 2. This can be addressed by
transforming the original RGB color space to a dif-
ferent three dimensional space with the color and in-
tensity information separated. We have tried to trans-
form our data to CIE L?a?b? and rgI color spaces,
but the improvement of the separation of the individ-
ual subject classes in the destination space was too
little to justify the additional computations involved
in the color space transformation.

2.3. The Model Parameters

There are several constant parameters, that con-
trol the estimate of the hierarchical histogram model
and calculations of its probability density function.
The following table summarizes those parameters to-
gether with the values that were estimated empiri-
cally so that the good results are obtained when ap-
plied on the labeling problem presented later in Sec-
tion 3.2.

Parameter Represents Used Value
Kb bin splitting threshold 2
Ku weight of the uniform dis-

tribution component
200

3. Results

The first part of this section is related to the test of
the hierarchical histogram. The second part covers
the application of the presented model on the labeling
task.

3.1. Testing the Hierarchical Histogram Model

The performance of the hierarchical histogram
model (HHM) depends on the choice of its param-

eters Kb and Ku as well as the amount of available
training data. For this test, we collected a set of
404 606 data samples that were manually labeled to
three classes. The set contains 340 600 background
samples, 16 751 object samples and 47 255 compan-
ion samples. The data corresponds to one out of
many video sequences used for testing the tracking
algorithm [2], in which the tracking is performed as a
labeling of the independently tracked feature points.
The companion class represents the object’s context.

We have performed several test batches, each with
a different amount (1%, 5%, 10%, 15%, 25%, 35%,
50%, 65% and 80%) of the training data that were
randomly sampled from the labeled set. The remain-
ing data served as a validation set. Every batch was
repeated ten times, each time with a new random
sample of the same size. The repeated measurements
from the same batch were averaged.

In each batch, we learned multiple HHM’s corre-
sponding to all combinations of Kb ∈ {1, 2, . . . , 20}
and Ku ∈ {13, 23, . . . , 403}. We also used the same
training data to learn a reference ten-component
Gaussian Mixture Model (GMM). The number of
components was experimentally verified to provide
the best results for this task. Then we used each
trained model to classify the points from the valida-
tion set using a simple strategy:

l?i = arg max
li∈L

(
P (xi|φli)

)
, (5)

where L is the set of labels, l?i is a decided label of
the point i, xi is its RGB color and φli are model
parameters of each class. Having all points classi-
fied we calculated the classification accuracy and the
precision and recall measures of each class. Table 1
summarizes the results. It can be seen that, in terms
of accuracy, the HHM outperforms the GMM, with
the exception of the smallest training set, where the
HHM wins only for a certain combination of its pa-
rameters. Observing precision and recall measures,
one can see that the HHM lags behind in object class
recall and slightly in companion class recall too, es-
pecially when trained with small data sets and for
large Kb and Ku. We took this into account when
choosing Kb = 2 a Ku = 200 for the labeling algo-
rithm, since we do not want to miss too many object
points. Note that these measurements are based on
the independent classification decisions. The com-
plete classifier, as described in [2], involves pairwise
dependencies, so the final classification will be bet-
ter.
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Training Background Object Companion
Data Accuracy Precision Recall Precision Recall Precision Recall
1%
3 418
165
478

GMM
Min
Max
Med
Mean
StDev

86.6
76
87.4
85.2
84.3
±2.16

98.3
91.8
96.7
94.4
94.4
±0.956

85.7
76.5
90.2
87.7
86.8
±2.72

27.5
15.6
26.8
23.3
22.7
±2.9

81.8
41.7
74.4
48.2
49.5
±6.08

77.5
54.1
78.9
69.2
68.9
±4.12

94.6
62
87.1
79.3
78.7
±4.91

5%
17 031
831
2 351

GMM
Min
Max
Med
Mean
StDev

86.5
80.5
90.9
87.8
87.4
±2.35

98.8
94.2
97.8
96.2
96.1
±0.857

85.1
80.2
93.1
90.1
89
±3.25

28.1
20.1
38.2
28.8
28.9
±4.24

88.7
45.2
80.4
58.5
58.8
±9.83

77.3
65.9
83.2
75.8
75.7
±4.66

95.4
77.6
91.2
86.5
86.1
±3.33

10%
34 092
1 692
4 743

GMM
Min
Max
Med
Mean
StDev

86
81.8
92.1
89.3
88.6
±2.35

98.8
95.4
98.1
97
96.9
±0.687

84.5
81.4
94.2
90.4
89.7
±3.19

27.1
21.2
44.8
33.4
33.2
±5.88

89.5
47.5
82.8
66.4
65.7
±9.45

77.4
70.7
84.1
77.5
77.4
±3.89

95.4
82.2
93.2
89.5
89
±2.43

15%
51 136
2 497
7 114

GMM
Min
Max
Med
Mean
StDev

86
82.5
92.6
89.6
89.2
±2.19

98.9
96.2
98.3
97.4
97.4
±0.562

84.5
82.1
94.2
90.3
89.9
±2.93

27.4
22.3
47.2
35.9
35.6
±5.93

89.7
56.7
84.1
72
70.9
±7.47

77.3
71.4
85.6
77.8
77.9
±3.74

95.5
83
93.7
91.1
90.7
±2.14

25%
85 227
4 192
11 836

GMM
Min
Max
Med
Mean
StDev

86
83.5
93.1
90.1
89.9
±1.99

98.9
96.6
98.5
97.8
97.7
±0.479

84.5
83.3
94.5
90.5
90.3
±2.6

27.3
23.8
48.7
37.3
37.8
±5.97

89.8
60.8
85.7
75.7
74.8
±6.09

77.1
71.9
85.8
78.7
78.7
±3.51

95.6
83.4
94.1
92.3
91.9
±2.11

35%
119 254
5 869
16 505

GMM
Min
Max
Med
Mean
StDev

86
84.1
93.3
90.2
90.1
±1.94

98.9
96.9
98.6
98
97.9
±0.4

84.4
84.1
94.6
90.4
90.4
±2.48

27.2
24.7
50.5
37.6
38.4
±6.12

89.9
63.6
86.4
77.8
77.2
±5.21

77.3
72.3
86.1
79.3
79.3
±3.28

95.5
83.6
94.4
93.1
92.6
±2.11

50%
170 443
8 410
23 571

GMM
Min
Max
Med
Mean
StDev

85.9
84.7
93.5
90.3
90.4
±1.82

98.9
97.3
98.7
98.2
98.2
±0.331

84.3
84.7
94.6
90.2
90.5
±2.3

26.9
25.8
50.7
37.6
38.7
±5.95

89.7
69
87.5
80.5
79.8
±4.52

77.5
72.7
86.4
79.7
80
±2.79

95.6
84.4
94.9
93.9
93.3
±2.02

65%
221 298
10 870
30 732

GMM
Min
Max
Med
Mean
StDev

86.1
85.3
93.6
90.3
90.5
±1.68

98.9
97.6
98.8
98.4
98.3
±0.276

84.6
85.3
94.4
90.2
90.5
±2.08

27.5
26.9
50.8
37.5
38.9
±5.61

90.1
71.8
87.6
81.9
81.1
±3.93

77.7
73.2
86.1
80.1
80.3
±2.42

95.4
85.1
95.2
94.2
93.7
±1.95

80%
272 539
13 409
37 848

GMM
Min
Max
Med
Mean
StDev

86
85.8
93.7
90.5
90.6
±1.58

98.9
97.8
98.8
98.4
98.4
±0.262

84.5
85.9
94.4
90.3
90.6
±1.94

27.3
27.6
50.8
37.5
38.9
±5.33

90.2
73.7
88
82.8
82.1
±3.72

77.5
74.1
86.3
80.8
80.9
±2.27

95.4
85.4
95.3
94.4
93.9
±1.92

Min Max
Table 1. Performance (in percent) of the hierarchical histogram model (HHM) in the various configurations compared to
the Gaussian mixture model (GMM) as a reference. Each table row corresponds to a single test batch. The amount of
the training data used in each batch is described in the first table column as a fraction (in percent) of the all data with
the corresponding counts of the background, object and companion points displayed bellow it. Each table cell contains a
small graph that represents the HHM performance measurements depending on Kb ∈ {1, 2, . . . , 20} (the horizontal axis
of the graph with its origin on the left) and Ku ∈ {13, 23, . . . , 403} (the vertical axis of the graph with its origin on the
bottom). The color code of the graph is different in each table column and corresponds to the minimum and the maximum
value of the measurements in the whole column, see the scale to right of the table. Next to the small graph there are
six numbers with color coded values in the same scale as the values in the graph. The first one is a measurement of the
reference GMM performance and the others are statistics of the HHM measurements shown in the graph to the left of
them – minimum, maximum, median, mean and standard deviation.
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Training GMM Hierarchical Histogram Model [ms]
Samples [ms] Kb 2 4 6 8 10 12 14 16 18 20

4 061 1 639 72 70 69 67 67 65 64 64 63 63
20 213 2 837 81 78 76 75 74 73 73 73 72 72
40 527 4 840 87 83 81 80 79 78 77 77 76 76
60 747 4 271 92 87 85 84 83 82 81 80 80 79

101 255 5 021 100 95 93 91 90 89 88 88 87 86
141 627 6 464 106 102 99 97 96 95 94 93 93 92
202 424 7 807 116 110 108 106 104 103 102 101 100 99
262 900 7 864 124 117 114 112 110 109 108 107 106 105
323 796 8 091 130 123 120 118 116 114 113 111 111 110

Table 2. Execution time (in milliseconds) of estimating the hierarchical histogram model in various configurations from
the training data and calculating likelihood of the testing data compared to the same operation performed with the Gaussian
mixture model (GMM). The rows correspond to different amounts of data samples used for training.

GMM: red-green GMM: blue-green HHM: red-green HHM: blue-green
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Figure 2. Comparison of the Gaussian mixture model (GMM) and the hierarchical histogram model (HHM) representing
appearance of three different subject classes. The 3-D PDFs are visualised as the red-green / blue-green marginals. The
horizontal axes of each graph has the origin on the left and represent the green intensity value. The vertical axis has the
origin on the bottom and represent the red or blue intensity value.

Our aim when designing the hierarchical his-
togram model was to design a model with the similar
classification performance but a much higher speed
of the parameters estimate and the likelihood calcu-

lation than the Gaussian mixture model. Table 2 jus-
tifies that we reached the goal.
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Tracking with the Gaussian mixture as the appearance model:
Frame 1. Frame 286. Frame 784.

Frame 1120. Frame 1163. Frame 1349.

Tracking with the hierarchical histogram as the appearance model:
Frame 1. Frame 286. Frame 784.

Frame 1120. Frame 1163. Frame 1349.

Figure 3. Application of the hierarchical histogram on the tracking task formulated as a semi-supervised learning and
labeling problem.

3.2. Application to a Labeling Problem

Figure 3 demonstrates the application of the hier-
archical histogram to the labeling task. The proposed
model replaces the Gausian mixture in the appear-
ance model of the algorithm described in [2]. The
tracking results of the two appearance model variants
are similar and in both cases the object (marked by
green crosses) was successfully tracked to the end of

the sequence. However, the time spent by the appear-
ance model related calculation was much lower in the
case of HHM model. From total 3 852 s of the track-
ing process, only 25 s were spent in the appearance
model learning and 41 s in the log-likelihood calcu-
lations. In the case of GMM those figures were sig-
nificantly higher: 7 873 s total running time, 3 684 s
appearance model learning and 560 s for the evalua-
tion of the appearance models log-likelihoods. The
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speedup of the appearance related parts is in the fac-
tor of 63 which corresponds well to the figures in Ta-
ble 2.

4. Conclusions

We have suggested a histogram-like model that
can be used to represent RGB color of subjects in
the tracking and segmentation tasks. The proposed
model overcomes the curse of dimensionality of the
traditional histogram and represents the color distri-
butions with a similar quality as the well known and
frequently used Gaussian mixture model, which was
proven by experiments. In addition to a good repre-
sentation of the involved distributions, the proposed
HHM surpasses the GMM in the simplicity of the in-
volved calculations, which makes it suitable for the
time critical tasks like a real-time tracking.
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Abstract. Example based methods have been com-
monly used to achieve good performance on image
super resolution (SR). In this paper, we propose a
new face hallucination method, namely face halluci-
nation based on sparse reconstruction (FHSR). Un-
like many existed face hallucination methods such
as the from local pixel structure to global image su-
per resolution method (LPS-GIS) and the super res-
olution through neighbor embedding (SRNE), where
the prior models are learnt employing the L2-norm
methods, but our FHSR framework aims to shape
the prior model using sparse representation, which is
solved by minimizing the L1-norm. Then this learn-
t prior model is employed to guide the reconstruc-
tion process. Based on the assumption that using
local image information only is sufficient to predict
the missing high resolution (HR) details, our frame-
work firstly uses the input single frame low resolution
(LR) facial image to search the similar face images
from a training dataset of LR-HR face image pairs.
The searched HR example faces should possess sim-
ilar local pixel structures to the input LR face. These
selected HR face images are then warped to the in-
put using optical flow. The local pixel structures are
learnt from the warped HR faces using sparse rep-
resentation. Finally, the learnt local pixel structures
are applied to the input LR face to estimate the tar-
geted HR face. Experimental results show that our
framework is very flexible, and can achieve a com-
petitive performance in terms of both reconstruction

error and visual quality.

1. Introduction

The idea of super resolution (SR) was first present-
ed by Tsai and Huang [25], and significant progress
has been made over the last three decades. Since
SR is an ill posed problem, the prior constraints
are necessary to attain the good performance in S-
R. Based on the different approaches to attain the
prior constraints, methods for SR can be broadly
classified into two classes. One is the convention-
al approach which reconstructs a HR image from
a sequence of LR images of the same scene, also
widely known as multi-image SR [9, 25] or regu-
larization based SR. These algorithms mainly em-
ploy regularization model to solve the ill posed im-
age SR and use smooth constraints as the prior con-
straints which are defined artificially. The other is
single frame SR [5, 11, 12, 14, 19], which is al-
so called learning based SR or example based S-
R and generates a HR image from a single LR im-
age with the information learnt from a set of LR-
HR training image pairs, and these algorithms attain
the prior constraints between the HR images and the
corresponding LR images through learning process.
Many example based or learning based algorithm-
s [5, 11, 12, 14, 16, 19, 21, 22] have been proposed
in the field of image processing. Also in SR, Qi-
u [22] and Baker [3] have demonstrated that the s-
mooth prior constraints used in many regularization
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based methods will provide less and less help to S-
R problem as the zooming factor increases, but ex-
ample based approaches are promising to overcome
this problem using advances in machine learning and
computer vision. In this paper, we focus on the single
image SR problem.

In a general framework of example based SR, the
input LR image is first interpolated using the conven-
tional methods to the size of the targeted HR image,
then the input interpolated LR is used to be the initial
estimation of the targeted HR. Here it is a blurry im-
age and lack of HR information. The input LR image
also is divided into the overlapping or nonoverlap-
ping image patches. The example based framework
will use the image patches to find the most matched
examples through searching a training dataset of LR-
HR image pairs, then the most matched HR exam-
ples is employed to learn HR information as the pri-
or constraints. Finally, the learnt HR information and
the input interpolated image are combined to evalu-
ate the targeted HR image.

The idea of face hallucination was first proposed
by Baker and Kanade [2], and was then used for SR
problems in [12, 16, 19]. Example based face hal-
lucination is a specific and an important object cate-
gory of image SR. In [16], a two-step approach was
developed for face hallucination, in which a Bayesian
formula and a nonparametric Markov Network were
employed to deal with face hallucination. Of all the
various methods for face hallucination, Hu [12] is the
first that explicitly and directly learn the local pixel
structures of the most matched example images as
reconstruction priors, and he proposed a three-stage
face hallucination framework of Local Pixel Struc-
ture to Global Image Super resolution (LPS-GIS)
in [12], in Stage 1, k pairs of example faces which
have similar pixel structures to the input LR face
are searched from a training dataset using k-Nearest
Neighbor (KNN), then they are subjected to nonrigid
warping using optical flow so that the corresponding
targeted HR image can be reconstructed more accu-
rately. In Stage 2, the LPS-GIS method learns the
face structures, which are represented as coefficients
using a standard Gaussian function; the learnt coeffi-
cients are revised according to the warped errors. In
Stage 3, LPS-GIS forces the revised face structures
namely the revised coefficients to the input LR face,
and reconstructs the targeted HR image using an iter-
ative method. However, in his LPS-GIS framework,
the prior models are learnt using L2-norm and it has

been demonstrated that it is less robust and more sen-
sitive to outliers which will usually decrease the ac-
curacy of image SR. Our proposed FHSR framework
aims to shape the prior model using sparse represen-
tation, which is solved by minimizing the L1-norm.
This prior model is then used to guide the reconstruc-
tion process. As for the organization of this paper,
Section 2 provides an introduction to a basic concept
which is called from local pixel structure with spar-
sity to face hallucination. The details of our frame-
work are presented in Section 3, including the com-
parison of the L1-norm and L2-norm used to learn
prior models. Section 4 presents the experiments and
an evaluation of the proposed framework. Finally,
the concluding remarks and future work are given in
Section 5.

2. Local Pixel Structure with Sparsity

Firstly, an observed model between a HR face and
its corresponding LR counterpart is given as

Il = IhHS(r) + N, (1)

where Il and Ih denote the LR and HR faces re-
spectively, H represents a blurring filter operator and
S(r) is a subsampling operator with a scaling factor
of r in every dimension1 , and N is a noise vector
such as the Gaussian white noise. Here, we ignore
the blurring filter, so (1) can be rewritten as follows:

Il = IhS(r) + N. (2)

Therefore, the purpose of SR is to recover as much
of the information lost in the down sampling process
as possible. As we know, the HR face and the corre-
sponding LR face have a common global face struc-
ture, so we can assume that they also have similar
local pixel structures, and the local image informa-
tion in the LR alone should be sufficient to predict
the missing HR details. In our algorithm, we use the
neighboring pixels of a missing pixel to estimate the
targeted HR face. This idea is similar to neighbor
embedding in [5, 11]. A formula is given to describe
the model that used in our method:

I(x, y) =
∑

µ,ν∈C
αµ,ν(x, y)× I(x+ µ, y + ν), (3)

where I(x, y) is a pixel at location (x, y), αµ,ν(x, y)
denotes the weight between the pixel I(x, y) and it-
s neighboring pixel I(x + µ, y + ν) with a relative

1Here we just assume the scaling factor in each dimension is
equal.

40



displacement of (µ, ν), µ and ν cannot be zero at
the same time, and C denotes a local window whose
center is at the pixel I(x, y). Based on the above
assumption of similar pixel structures between the
HR-LR face pairs, the weights are almost the same
at the same position of HR face and the correspond-
ing LR one. Our algorithm searches for k similar LR
examples to the input face from a dataset of LR-HR
face pairs, meanwhile the neighboring weights of the
pixel structures in the corresponding k HR example
faces are utilized to estimate the information lost in
the input LR face. In order to learn the embedded
weights of the central pixel, Chang et al. [5], Gong et
al. [11], and Hu et al. [12] used the L2-norm methods
such as Gaussian functions and least square methods.
We believe that a good visual quality image is very
sharp due to sharp edges, high frequency informa-
tion and discontinuities, the sharp image means the
local pixel structure has sparse property and this can
be interpreted that the pixel I(x, y) in (3) can be bet-
ter reconstructed with only a fraction of but not all
neighboring pixels, so in this concept, our algorith-
m will use sparse representation [24, 29] as the prior
model to learn the embedded weights.

In [32, 33, 34], Yang et al. have imported sparse
representation to SR and face hallucination problem-
s, our method has some similarities to [32, 33, 34].
We both construct the methods based on the con-
cept in sparse signal representation which suggests
that the linear relationships among HR signals can
be accurately recovered from their low dimensional
projections. Also we both use LR image’s structure
to get a sparse prior model and then use this sparse
model to reconstruct the HR image or HR patches.
But the difference is that Yang et al. believe im-
age patches can be well represented as a sparse lin-
ear combination of elements from an appropriately
chosen overcomplete dictionary while in our method,
a pixel can be well represented as a sparse linear
combination of elements from its neighboring pix-
els. They seek a sparse representation for each patch
of the LR input from an LR overcomplete dictionary,
then they use the coefficients of this representation to
generate the HR output. One important process is the
training of two dictionaries for the LR and HR image
patches. While in our method, we only have LR dic-
tionary constituting with neighboring pixels of input.
We use the sparse local pixel structure to ensure the
reconstruction of the output HR.

Sparse representation has gained a great deal of

attention recently. It is based on the assumption that
most or all signals can be represented as a linear com-
bination using only a small number of elementary
signals, called atoms, belonging to an overcomplete
dictionary. Compared to other conventional method-
s, sparse representation can usually offer a better per-
formance with its capacity for efficient signal model-
ing [13]. The sparse representation of signals has al-
ready been applied in many domains, such as object
recognition [24, 29], text categorization [23], signal
classification [13], etc.

In sparse representation, a common formula for
the problem of finding the sparse representation of
a signal in a given overcomplete dictionary is de-
scribed as follows:

x̂0 = min ‖x‖0 , s.t. y = Ax, (4)

where A is an M × N matrix whose columns are
the elements of the overcomplete dictionary with
M < N , and y ∈ RM×1 is an observational sig-
nal. The purpose of sparse representation is to find
an N × 1 coefficient vector x, which is considered
to be a sparse vector, i.e. most of its entries are ze-
ro, except those whose elements in the overcomplete
dictionary A are associated with the observational
signal y. ‖x‖0 is the L0-norm, and essentially it is
equivalent to the number of non-zero components in
the vector x. In fact, if the columns of A are of a gen-
eral case, i.e. nonorthogonal, then a random vector x
is the unique sparsest solution as long as it has less
than M/2 non-zero components [7]. However, solv-
ing the sparsest solution for (4) has been found to be
NP hard, and it is even difficult to approximate [1]. In
other words, there is no known process which is more
efficient than an exhaustive search of all the possible
x in solving the sparsest solution.

With the rapid development of the theories for
compressed sensing [4, 6], it has been discovered that
if the vector x in (4) is sparse enough, then the so-
lution to the L0-norm in (4) can be replaced by the
solution to the L1-norm problem as

x̂1 = min ‖x‖1 , s.t. y = Ax, (5)

In fact, as long as the number of non-zero com-
ponents in x0 is a small fraction of the dimension
M, then the L1-norm can replace and recover the L0-
norm efficiently [29]. In addition, the optimization
problem of the L1-norm can be solved in polynomial
time [8, 30]. However, in real applications, the data
in the overcomplete dictionary A are noisy. This will
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Figure 1. Fitting a line to 11 given points using the L1-
norm and L2-norm: (a) without outliers, and (b) with two
outliers.

lead to the result that the sparse representation of an
observational signal in terms of the training data in A
is not very accurate. In order to deal with the prob-
lem, formula (5) can be relaxed to a modified form
as

x̂1 = min ‖x‖1 , s.t. y = Ax+ z, (6)

where z ∈ RM×1 is a noise vector with bounded en-
ergy ‖z‖2 ≤ ε. Thus, (6) can be rewritten as follows:

x̂1 = min ‖x‖1 , s.t. ‖y −Ax‖22 ≤ ε, (7)

Lagrange multipliers offer an equivalent formula

min
x
‖Ax− y‖22 + λ ‖x‖1 , (8)

where λ ∈ R+ is a regularization parameter which
balances the sparsity of the solution and the fidelity
of the approximation to y. This is actually a typi-
cal convex optimization problem, and it can be effi-
ciently solved using the method of Large Scale L1-
Regularized Least Squares (L1LS) [17].

In the previous section, we have stated that many
face hallucination methods use the L2-norm to learn
the prior model and we believe the local pixel struc-
ture in a good visual quality image has sparse prop-
erty that means in all the neighboring pixels of
pixel I(x, y) in (3), many neighboring pixels can
be regarded as outliers. It has been demonstrated
in [15, 18, 29], compared to the L1-norm, the L2-
norm is less robust and is more sensitive to outliers
which will usually decrease the accuracy of image S-
R. Furthermore, in [18, 29], the L1-norm has given
more robust and better results on SR and face recog-
nition respectively, especially when the signal is s-
parse and discontinuous. Here, we will give a simple

example to illustrate this point that L1-norm is more
robust to outliers. Suppose 11 points {(xi, yi)|i =
0, ..., 10} are given. Here we want to fit a line model
y = kx + b to these points, then, the L1-norm and
L2-norm are utilized to solve this model. Fig. 1(a)
shows theL1-norm andL2-norm both produce a sim-
ilar estimation when there are not any outliers in the
input data. However, when there are two outliers in
the input data, the results are different. In Fig. 1(b),
where two outliers are given, the L1-norm still pro-
duces similar result, while it can be obviously seen
that the outliers affect the result ofL2-norm seriously
and lead to a divergent result. It demonstrates meth-
ods of L1-norm are more robust to outliers and this
toy example make us believe that in the condition of
sparse local pixel structure, sparse representation can
provide a better performance in face hallucination.

3. Detailed Procedure of the Framework

Fig. 2 illustrates that three primary steps are in-
volved in our proposed FHSR framework. In Step 1,
the input LR face is used to search a face dataset and
identify the k pairs of LR-HR example faces having
the most similar local pixel structures to the input L-
R face using the PCA and the KNN methods. The k
pairs of example faces are composed of k LR faces
and their corresponding k HR ones. Then the k HR
examples are employed and warped to the input LR
face using optical flow to make the targeted HR face
of the input more accurate. This process will produce
k HR warped examples, and the warped errors will be
used in the next step. In Step 2, the local-pixel struc-
tures, which are represented by the weights of the
neighboring pixels, are learnt from the k HR warped
example faces using sparse representation. Then, the
accuracy of the weights is improved using the warped
errors produced in Step 1. In Step 3, the weights of
the neighbors are employed to estimate the targeted
HR face using an iterative method. Following are the
details of these three steps.

3.1. Step 1: Searching and Warping

In our FHSR framework, finding the example
faces of the input LR face in a large face dataset is the
first step. In the k pairs of example faces, the k LR
example faces have the most remarkably similar pix-
el structures to the input LR face. In our experiments,
the dataset contains 800 LR-HR face pairs, and they
have all been aligned and normalized. The LR faces
are also magnified to the size of the HR faces using
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Figure 2. The implementation procedure for our proposed FHSR face hallucination framework.

bicubic interpolation. Principal component analysis
(PCA) is used to represent the interpolated LR face
images, and the KNN method is adopted to search the
k LR example faces that are the most similar to the L-
R input face. Then, the selected corresponding k HR
faces are used as example faces. A warping opera-
tion is employed to make the estimation more accu-
rate. We use optical flow to warp the example faces.
Optical flow has been used in SR in [12, 18]. In our
paper, firstly, we derive the flow field between the in-
put LR face and each of the k LR example faces, and
then the corresponding HR example faces are warped
accordingly based on the k flow fields, respectively.
The purpose of the warping operation is to force the
k HR example faces to have the most similar local
pixel structures to the input LR face.

3.2. Step 2: Learning Neighboring Weights via
Sparse Representation

Combining (3) and (4), we propose using the fol-
lowing formula to model the learnt local pixel struc-
ture:

z(x, y) =

p2−1∑

j=1

αj(x, y)A(:, j), (9)

where z(x, y) = [I1(x, y), · · · , Ik(x, y)]T and k is
the number of HR example faces, αj(x, y) denotes
the weight between the pixel I(x, y) and its neigh-
boring pixel I(x+µ, y+ ν) with a relative displace-
ment of (µ, ν). The ith row of the matrix A in (8)
and (9) are the neighboring pixels of the central pixel
z(x, y) of the ith example face, and the neighborhood

size is p× p:

A = [I1µ,ν(x+ µ, y + ν) · · · Ikµ,ν(x+ µ, y + ν)]

∈ Rk×(p2−1).
(10)

We also assume that x =
[0, · · · , 0, αµ,ν(x, y), · · · , 0]T is the coefficient
vector used in (8), whose entries are all zero, except
those associated with the central pixel vector y.
We use L1LS [17] to solve (8) with the matrix A
and the central pixel vector y. After the coefficient
vector x is computed using L1LS, a refinement
procedure is performed according to the warped
errors produced in the first step. x can be rewritten
as x = cx,yx

′,where x′ denotes the x in (8), and cx,y
represents the refinement procedure. Then (9) can
be rewritten as

z = cx,yAx
′ = cx,y ẑ (11)

where x′ has been calculated using L1LS. The defi-
nition of cx,y is the same as in [12].

3.3. Step 3: Reconstructing the Targeted HR Face

At this step, the local structures have been learn-
t. The major task of this step is to force the lo-
cal structures of the reconstructed face similar to fit
those of the input interpolated LR face. An iterative
method [27] is employed in this step. The pixels of
the input LR image are used as the anchor points in
the iterations. The targeted HR pixel values are con-
fined within the range of 0-255, and are reconstructed
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as

4t(x, y) = Îth(x, y)−
∑

µ,ν∈C
α(x, y)̂Ith(x+µ, y+ν),

(12)
Ît+1
h (x, y) = Îth(x, y)− g4t (x, y), (13)

where 4t(x, y) is the regulation parameter between
iterations, and g is a scale factor and set to be 0.05
in our experiment. Furthermore, in each iteration,
we have Ih(x, y) = Il(

x
r ,

y
r ), where r is the down-

sampling factor in both dimensions in (2). The input
interpolated LR face is selected as the initial estimate
HR image. In our experiments, we set the number of
iterations to be performed t at 200.

4. Experimental Results

In our experiments, the training face dataset which
contains 800 images(100 for test and others for train-
ing) is selected from the GTFD [10] and the FERET
databases [20]. The parameters k and p in (10) and
λ in (8) were determined empirically through exper-
iments. In our next experiments, we set k = 9, λ =
0.03, p = 3.

To measure the performance of our proposed
face hallucination method, we first reconstructed HR
face images with a magnification factor of 4. The
size of the input LR faces was 31 × 27, and the
size of the original faces was 124 × 108. All the
face images in the dataset have been aligned using
Wong’s method [28] and normalized using an effi-
cient illumination-normalization technique [31]. Our
proposed algorithm is compared to Hu’s method [12]
and Chang’s method [5], as well as bicubic interpo-
lation. The reconstructed HR faces of five random-
ly selected input LR faces using the different meth-
ods are shown in Fig. 3. It is obvious that the re-
sults using bicubic interpolation are the most blurry,
while the others can provide much better results, es-
pecially Hu’s method and our proposed method. To
be specific, Hu’s method and our proposed method
achieve better performance in the eyes, mouth and
eyebrows, and our method can achieve even better
results in edge regions than Chang’s and Hu’s meth-
ods. This is mainly due to the fact that theL1-norm is
more robust than the L2-norm when there are outlier-
s in the data. Next, we measured the performance of
the different methods in terms of PSNR (Peak Sig-
nal to Noise Ratio) and SSIM (Structural Similari-
ty Index) [26] using test samples, and the results of
some samples are shown in Tab. 1. Our method out-
performs the other methods in terms of PSNR and

PSNR(dB) SSIM
Bi-cubic interploation 25.589 0.7659
Hu’s method 27.850 0.8448
Chang’s method 27.317 0.8203
Our FHSR method 28.901 0.8638

Table 1. Average PSNR and SSIM of different methods,
with magnification factor = 4.

PSNR(dB) SSIM
Bi-cubic interploation 23.372 0.7278
Hu’s method 26.790 0.8086
Chang’s method 23.342 0.7176
Our FHSR method 27.734 0.8156

Table 2. Average PSNR and SSIM of different methods,
with magnification factor = 6.

SSIM. As mentioned above, Hu’s method is superior
to Chang’s method, and the bicubic interpolation pro-
duces the worst results. The results shown in Fig. 4
and Tab. 2 demonstrate that our method can achieve
the best performance in terms of both visual quality
and reconstruction error.

We also measured the performances of the differ-
ent methods when the magnification factor was in-
creased to 6. The sizes of the HR and LR images
were 126 × 108 and 21 × 18, respectively. Fig. 4
shows the HR faces reconstructed using the differen-
t methods, and the corresponding average PSNR and
SSIM are tabulated in Tab. 2. We can see that the per-
formance of Chang’s method degrades significantly,
and is even worse than bi-cubic interpolation. How-
ever, our proposed method can still retain a steady
performance in terms of both visual quality and re-
construction error and it demonstrates that our pro-
posed FHSR framework can deal with larger magni-
fication in face hallucination problem.

5. Conclusion

In this paper, we have proposed a method, namely
FHSR, for face hallucination. Our method employs
neighborhood embedding, and the neighbor weights
are learnt using sparse representation, i.e. L1-norm,
instead of using L2-norm. We also apply optical flow
to align images so as to make the estimation more
accurate. We compare our method with some other
state of the art SR methods, and the experimental re-
sults shows that our method is competitive and can
achieve the best performance. The primary reason of
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Figure 3. HR faces reconstructed using different methods
with a magnification factor of 4: (a) the input LR faces;
(b) the original HR faces; (c) bicubic interpolation; (d)
Hu’s method; (e) Chang ’s method; and (f) our proposed
FHSR framework.

Figure 4. HR faces reconstructed using different methods
with a magnification factor of 6: (a) the input LR faces;
(b) the original HR faces; (c) bicubic interpolation; (d)
Hu’s method; (e) Chang ’s method; and (f) our proposed
FHSR framework.

the superior performance of our proposed method is
that it can estimate the local pixel structures of tar-
geted HR faces more accurately from the example
faces using sparse representation. In future work, we
would like to improve and enrich our work in the fol-
lowing aspects. First, find a new image alignment
method to improve the performance of our frame-
work , as it is proposed based on the face local-
pixel structures, so an efficient and accurate align-
ment method for the face images is very important.
Second, we plan to apply our framework to other SR
problems.
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Abstract. In contrast to the existing approaches
for document analysis and understanding this paper
presents a system that determines the logical role
of vector-graphic objects in predominantly textual,
natively digital PDF documents. This work was
inspired by the idea of recognizing structural
graphic objects in order to clarify the logical
layout of mostly graphical documents, even those
of a complex nature. Based on visual perception,
geometric features and spatial relations, the
proposed statistical method distinguishes illustrative
graphic objects from structural graphic objects. We
evaluated the method on two document domains
– newspapers and technical manuals – and found
the results to be reliable. We propose using
logical information about graphic objects to be
a new step towards domain-independent document
understanding systems.

1. Introduction

A human reader can easily rediscover the logical
structure of any document from text properties
(typesetting conventions) and layout. In ambiguous
cases a human can additionally follow the meaning
of the text paragraphs.

Document analysis and understanding systems
presented in the literature are focused on textual
data in domain-specific documents (books, business
letters, scientific papers, technical specifications).
Such systems determine the logical structure –
headings, paragraphs, reading order–based on
individual properties of a given document class. In
these works graphic regions are detected as non-
textual and no further processing or analysis for them
is performed [1, 3, 2, 6]. The problem stems from a
need to create a system capable for a broad class of

documents and to reuse or repurpose the document
content, represented by graphic objects. The purpose
of this paper is to draw attention to the utilization of
graphical objects for more reliable logical structure
recognition.

Natively digital PDF documents (PDF Normal
or Formatted Text and Graphics) often do not
contain explicit logical structure information and
define vector-graphic objects by a set of instructions
for rendering low-level primitives, such as lines,
rectangles, curves and glyphs. In such documents
vector-graphic objects can be a part of a graphic
region, table, letter or ruling line (Figure 1).

Hereafter structural element is a line or rectangle
that is used as a visual separator of logical blocks in
a document. Other graphic objects are respectively
called non-structural elements.

We class documents into three types according to
their layout complexity:

Figure 1. The result of parsing instructions of natively
digital PDF page.
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Figure 2. Example of a mostly textual
document with trivial layout
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Figure 3. Example of a
predominantly textual document
with non-trivial layout

Figure 4. Example of a complex
ambiguous document

• simple, mostly textual documents:
determination of logical layout is relatively easy
for both humans and automated algorithms,
e.g., scientific papers (Figure 2);

• complex predominantly textual documents:
layout analysis is more difficult for automated
algorithms; however it can still be performed by
understanding text-based layout conventions,
e.g., newspaper pages (Figure 3);

• complex, mostly non-textual documents: layout
analysis requires understanding of the graphical
content, making domain-generic solutions
unfeasible, e.g., creative design of magazines
(Figure 4).

The paper presents an object-based approach for
analysis and understanding of vector graphic objects
that appear in predominantly textual natively digital
PDF documents. Our heuristic rule-based method
considers logical geometrical properties and mutual
arrangement between the graphic and text objects.
This approach enables grouping low-level primitives
into higher-level logical blocks and finding structural
graphic elements.

The remainder of this paper is organized as
follows: in Section 2 we provide an overview to
state-of-the-art research related to the problem of
logical structure discovery. Section 3 describes
in detail a method for analysis of vector graphic
content. Section 4 shows the evaluation of the
above method and discussion of the obtained

results. Finally, Section 5 presents conclusions and
directions for the future work.

2. Related work

State-of-the-art methods provide various solutions
to the problem of logical structure discovery. Most
of them take into account image-based features and
deal with document images rather than electronic
documents. As our system processes natively digital
PDF documents, this section focuses on approaches
using PostScript instructions as a starting point.

A groundbreaking method for object-based
analysis was published by Lovegrove and
Brailsford [9]. Their approach attempts at
segmenting bottom-up text regions and determining
their logical role – heading, title, main text etc. –
according to the decision of a blackboard system
combined with logical-relationship rules. Although
this methodology is text-oriented, for the future
work authors propose to take advantage of “graphic
elements such as article or column separators” for
document understanding purposes. Anjewierden [1]
created a system, AIDAS, which builds physical
blocks in a bottom-up fashion and determines their
logical role top-down using shallow grammars. The
system was tested on three domains of technical
manuals provided by industrial partners. Despite
its extendability to other domains by adding extra
rules, the major drawback of the proposed solution
is its domain-specific nature. Chao and Fan [3]
developed a method for information extraction in
scientific papers. It uses both object-based and
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Figure 5. Main steps of the presented algorithm for processing natively digital PDF page

image-based approaches for establishing higher-
level vector graphic entities. These entities are
obtained by coordinate comparison of potential
graphic regions in a document image combined
with analysis of path objects extracted from the
PDF content stream. Nevertheless there is no
explicit utility of the obtained ‘logical blocks’ during
logical structure discovery. Déjean and Meunier [4]
present a system that applies XY-cuts and grouping
according to the spatial closeness of objects for
external and path objects. The purpose is to compose
thousands of low-level primitives into physical
blocks. Further processing for determining a logical
role for each block is not implemented. Bloechle
et al. [2] present an object-based system, Dolores
(Document Logical Restructuring), for restructuring
textual and graphical content. The idea is based on
using artificial neural networks which are trained
to recognize the logical layout of the newspapers.
Hassan [7] developed a system, PDF Extraction
Toolkit1, that includes an object-based bottom-up
method for extracting logical text blocks, vector-
graphics objects (lines, curves, rectangles) and
bitmaps. The GUI shows the rectangular bounding
boxes of the detected component groups, although
the primitives themselves may not be rectangular in
shape.

Overall the publications mentioned above do
not describe the processing of graphical primitives
in sufficient detail. They also do not appear to
distinguish between structural and non-structural
objects and use this information for document
understanding tasks. We believe that this distinction
is a powerful feature that document understanding
systems can use for logical structure recovery.

This idea was roughly implemented by Gao
et al. [6]. Their image-based method aims at

1pdfXtk: http://pdfxtk.sourceforge.net

extracting structural information from PDF book
documents. In one of the processing steps they find
separation lines that visually distinguish different
parts of the documents. In contrast, our approach
is oriented for predominantly textual documents,
such as newspapers, which provide a rich variety of
layouts and different types of structural elements–
lines, rectangles, bitmaps.

We decided to advance the PDF Extraction Toolkit
from the point of analysis and understanding of
vector graphics. The description of the new methods
can be found in [5], as well as in the next section.

3. Methodology

The methodology in this section is largely
identical to that introduced in [5] and is described
here in detail for consistency and completeness.

The entire system pdfXtk performs analysis and
understanding of natively digital PDF documents
in three steps (Figure 5): parsing the PDF
content stream, document analysis (defining a
physical structure of a document), and document
understanding (defining a logical structure of a
document). As a result, the given PDF document is
represented as a set of text regions, graphic regions
and structural elements.

On the first step the page content is extracted from
PDF instructions and transformed into Java object
primitives. The location of these primitives on the
page is defined by their bounding box coordinates in
2D Cartesian space. In pdfXtk we store the following
types of primitives: line segments, rectangles,
bitmaps, text segments (text blocks of typically 2-3
characters). The second step includes the bottom-up
segmentation methods for text and graphic objects,
which are based on the principles of visual cognition.
In the final processing phase, we determine which of
the graphical objects represent structural elements,
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as opposed to graphic regions. The result of these
algorithms is a representation of a document as a
set of text regions, graphic regions and structural
elements.

The remainder of this section describes our
grouping rules and methods for determining whether
a vector object is structural. The task of processing
the text blocks is not addressed in this paper (see [8,
7] for a description).

3.1. Grouping rules

The devised grouping rules are based on
principles of visual cognition of commonly occurring
layout constructions. They take into account the
geometrical properties of the graphic objects as well
as their mutual spatial arrangement. We classify
these rules into two categories: intersection-based
and distance-based. When applied in combination
with each other, they enable higher-level objects to
be constructed, which usually correspond to distinct
logical objects in the document’s structure.

3.1.1 Based on intersections

Lines. Two lines are grouped together, if the
intersection between them is established. For the
next line, we check the intersection with each
member of the group. The exception case happens,
when these lines construct a solid line or visually are
perceived as a single object.

Rectangles. This method is applicable not only
to rectangles (filled or non-filled), but also to bitmap
objects and complex figures (in the latter case, the
bounding box is used). It is based on the assumption
that two structural rectangle objects on the page
are unlikely to intersect. Specifically, when the
topmost coordinate of one rectangle is less than the
bottommost coordinate of the other or when the
leftmost coordinate of one rectangle is greater than
the rightmost coordinate of the other.

Often advertisements or other separated content
is enclosed in structural rectangles, which are very
close to each other or even overlap. Hence, before
merging such elements using the above rule, we
check whether they enclose further objects. If yes,
then the given pair of rectangles is not grouped.

Line and Rectangle. In predominantly textual
documents, two types of intersection between line
and rectangle objects can occur:

1. structural line intersects the rectangular object;

Figure 6. Intersection-based algorithm for line and
rectangle. First row: three considered cases of
intersection; second row: examples of the above cases
with structural lines; second row: examples of the above
cases with non-structural lines

2. line segment intersects the rectangular object,
both are part of a graphic region.

Structural lines usually appear to intersect
rectangular objects in headlines, headers and footers.
Here the length of the horizontal or vertical structural
line is in large excess over the width or height of
a rectangular object correspondingly. On the other
hand, in a graphic region lines and rectangles are
approximately of the same size. For the purpose
of distinguishing these two cases three actions are
sequentially performed:

a) the width ratio or height ratio, whichever is the
larger, is compared to the given threshold;

b) we determine the type of intersection or,
more precisely, the mutual arrangement of the
intersecting objects (see Figure 6);

c) the ratio between both parts of the line, split at
the intersection point, is compared to a given
threshold.

Line and Text. There are a variety of ways
in which line and text fragments can intersect each
other. In our research we focused on four cases that
commonly occur in newspapers:

a) line underscores text block;

b) line crosses word;

c) lines form the axes and text blocks represent
labels (as in a chart or diagram);

d) text block is surrounded by lines, which
distinguish it from other parts of a document.
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Cases a) and b) can be distinguished from each
other by the distance between their centres projected
on the Y-axis: if the line is closer to the centre of
the text bounding box than to its border, then case
a) applies; otherwise case b). Cases c) and d) can
also be distinguished by the distance between their
centres, but projected on the X-axis: if the line is
touching or intersecting the text bounding box, then
case c) applies; otherwise case d).

Rectangle and Text. As in the previous paragraph
there are several possibilities of intersection between
the given objects. More precisely:

a) rectangle encloses text fragment;

b) rectangle intersects text fragment;

c) rectangle slightly touches text fragment.

The last case occurs in tight layouts, where
the rectangular bounding boxes of neighboring
components often slightly overlap each other.

3.1.2 Based on distance

Lines. Here the distance-based rules consider the
possibility of dashed lines. Line segments represent
small objects with the distance between them less
than or equal to the element size.

Rectangles. Two rectangles are considered as a
single object if the distance between their centres is
less than a given threshold. This threshold depends
on two parameters: a granularity-level coefficient
and the widths or heights of the rectangles. It is
calculated by multiplying the first parameter with the
sum of the second.

The granularity-level coefficient depends on a
size ratio of the given rectangles and is divided
into 3 types: high (0.55), normal (0.6) and low
(0.65). These numerical values were obtained
experimentally. Next, a mutual arrangement
between two rectangles is defined as one of three
possible cases: they lie in a horizontal line, in
a vertical line, neither in a horizontal nor in a
vertical line. Depending on this arrangement the
threshold distance is then computed using the sum
of rectangles’ heights, widths or both – widths
and heights – correspondingly. In the last case
two threshold distances are computed. Finally,
the threshold distance is compared to the distance
between the centres of the given objects projected
on the appropriate axis – X-axis, Y-axis, both axes
correspondingly.

It is worth noting that our system represents
composite objects by their rectangular bounding
box. In such a manner, glyphs that form parts
of logos, newspaper headings, etc. are introduced
as rectangular objects. A vivid example of the
above glyphs is the heading of newspapers such as
The Sydney Morning Herald, International Herald
Tribune, etc. Here, low-level primitives are
positioned sequentially in one row/column. In order
to detect this case, we refer to the golden ratio font
rules [2].

Errors can occur with advertisements that have the
same size and are close to each other (Section 3.1.1,
Rectangle and Rectangle). These advertisements
differ from glyphs as they also contain text.
Moreover, the advertising boxes are usually filled
with objects as large as at least one third of their size,
whereas glyphs have a negligibly small filled area.

3.2. Finding structural elements

Line. Generally a structural line occurs as
a horizontal/vertical line or rectangle that looks
like a line, which does not intersect other non-
structural objects (strokes, lines, rectangles, merged
graphic regions, text fragments) and is not enclosed
in any graphic region. These features represent
preliminary conditions for finding a list of structural
line candidates. Next, for each candidate the
closeness and relation to text fragments is taken into
account.

As an example, in Section 3.1.1, paragraph Line
and Text we considered four cases. Case a) –
line underscores text block – is neither structural
nor illustrative, but rather an integral part of the
formatting of the text. In contrast case b) – line
crosses a word – the line is likely to form a part
of an illustrative region. In cases c) and d) there
is a pair of identical groups of straight lines with
different semantics: in case c) these lines are a part
of chart, whereas in case d) the lines are used as
a barrier’ and serve the purpose of separating the
the text paragraph from the remaining page content.
Thereby we conclude that c) is an example of non-
structural lines at the same time as d) is an example
of structural lines.

Rectangle. Generally, a structural rectangle does
not intersect other graphic primitives and regions, but
can enclose them. The special case is that of “stand-
alone” rectangle objects, which often look like and
serve the same logical function as lines.
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4. Evaluation

The aforementioned state-of-the-art methods
either do not differentiate graphic objects of a
document into structural and non-structural or do not
provide any experimental results that can be further
used for the reasonable comparison.

For the purpose of evaluation we created an
interactive evaluation tool and performed estimation
of the obtained results on a bitmap level using
similarity measures from [10].

The system performs several tasks: ground truth
image generation, resultant image generation and
comparison of the above images. As input it takes
a binary image of a given PDF document at a
fixed resolution, 72dpi, which is sufficient for this
purpose. Ground truth image generation is obtained
by manually marking the appropriate logical graphic
regions on a binary image. The resultant image is
produced by automatic mapping of the output XML
file to the binary image. Each logical type of a
graphic object(structural line, structural rectangle,
illustrative region) is represented by a specific color.
Correspondence between two images is established
via pixel-by-pixel color-value comparison. The
interface of the system is shown in Figure 9.

For the purpose of defining the measures that
determine the nature of overlapping between the
regions, we borrow ideas from the approach
proposed in [10]:

• correct detection – regions are mainly
overlapping ;

• partial detection – some overlapping detected,
but not sufficient as in the first case;

• over-segmentation – a single object in the
ground truth is detected as two separate
segments;

• under-segmentation – two segments in the
ground truth are erroneously merged in the
algorithm’s output;

• incorrect detection – the types of region in
ground truth and result are different (structural
rectangle, structural line or graphic region);

• false positives – the region is marked by the
algorithm, but does not occur in the ground
truth;

• missed objects – the region is marked in the
ground truth, but has not been detected by the
algorithm.

4.1. Experimental results

Our approach was tested on predominantly textual
electronic PDF documents from two domains:
newspapers and technical manuals. For the newpaper
dataset we took 140 pages from 13 different
newspapers taken from 15-17 April 2012, namely
Nuovo Quotidiano di Rimini, The Wall Street
Journal, El Mundo del Siglo XXI, China Daily, Il
Tirreno, Die Tageszeitung, il Giornale, Le Monde,
L’Eco di Bergamo, Äripäev, La Gazzetta dello Sport,
International Herald Tribune, Bresciaoggi; for the
technical manual dataset we took 40 pages from the
first 10 different manuals obtained by using a popular
search engine. The results of our evaluation are given
in Table 1 and Table 2 respectively.

4.2. Discussion

By testing on two datasets from different domains,
we can see how the algorithm performs on different
types of document. Newspapers provide a rich layout
variety and sparse complex vector-graphic objects,
such as drawings. Technical manuals, on the other
hand, are represented by a simple logical layout and
mostly include sophisticated figures. The algorithm
demonstrates a high performance on predominantly
textual, natively digital PDF documents from both
domains.

An important drawback for the proposed
algorithm is that PDF is based on the PostScript
page description language. A limited number of
rendering instructions can lead to an unexpected set
of underlying operator structures even for a simple
page layout. Although such documents are easily
understood by humans (Figure 7), this can cause
problems for algorithms that work directly on the
operator level (Figure 8).

5. Conclusion and further work

This paper addresses the problem of studying
the properties of graphical content in documents,
which can help us divide a page into logical
blocks. At this point arises a task of differentiating
graphic objects into structural and non-structural.
A solution for this task, which is oriented
to predominantly textual natively digital PDF
documents, is presented. It includes algorithms for
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grouping graphic primitives into higher-level logical
blocks and for understanding their logical role in a
document.

The efficiency and reliability of the system was
tested on newspapers and technical manuals and
achieved good results. Choosing these document
domains was caused by the need to prove that the
proposed heuristic rules perform well not only for
documents from the newspaper domain, but also
for technical figures and schemes. The current
implementation is oriented to predominantly textual
documents. For the future, we propose to extend our
set of heuristic rules by considering the possibility of
bitmap elements and text as being structural. This
has the potential to lead to better results, particularly
on documents with increased amounts graphical
content.

Figure 7. Original newspaper page

Figure 8. Parsing the PDF content stream reveals two
rectangles (highlighted in red) that cross each other on the
left side at the center of the page. As a result, the whole
page will be perceived as a non-structural graphic region.
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Figure 9. Interface of the evaluation tool

Total Retrieved Correct
detection

Incorrect
detections

Partial
detections

Over
segment.

Under
segment.

False
positives

Missed
objects

Structural
lines

1235 1272 1062(86%) 126(10%) 0 0 36(3%) 126 51

Structural
rectangles

637 655 452(71%) 226(35%) 1(<1%) 11(<2%) 4(<1%) 78 50

Graphic
regions

559 977 470(84%) 66(12%) 9(<2%) 216(38%) 36(6%) 231 12

Table 1. Evaluation results on newspapers

Total Retrieved Correct
detection

Incorrect
detections

Partial
detections

Over
segment.

Under
segment.

False
positives

Missed
objects

Structural
lines

96 106 89(92%) 18(18%) 0 0 0 1 0

Structural
rectangles

21 47 19(90%) 7(33%) 1(4%) 1(4%) 1(4%) 11 2

Graphic
regions

130 153 121(93%) 6(4%) 2(<2%) 25(19%) 3(2%) 1 1

Table 2. Evaluation results on technical manuals
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Abstract. In our paper we present an architecture for
a system capable of providing back-end support for web-
service by running a variety of computer vision algorithms
distributed across a cluster of machines. We divide the
architecture into learning, real-time processing and a re-
quest handling for web-service. We implement learning
in MapReduce domain with Hadoop jobs, while we im-
plement real-time processing as a Storm application. An
additional website and Android application front-end are
implemented as part of web-service to provide user in-
terface. We evaluate the system on our own cluster and
show that the system running on a cluster of our size can
learn Caltech-101 dataset in 40 minutes while real-time
processing can achieve response time of 2 seconds, which
is adequate for multitude of online applications.

1. Introduction
Increased processing power behind server based com-

puters has in the recent years enabled many online ser-
vices to offload their processing into a cloud-based com-
puting. This has also become beneficial for computer vi-
sion problems where many computationally expensive al-
gorithms are already enabling services such as TinEye1,
Macroglossa2, Google Image Search3 or Google Gog-
gles4. These online services work particularly well for
images that the system has previously seen on the inter-
net but do not perform very well on previously unseen
images. For instance, the TinEye service does not per-
form any object recognition5, while querying Google Im-
age Search with an camera snapshot of a simple coffee
mug or a chair produces results where there is no mug or
chair in any of the first 50 hits (see, Fig. 2). The only vi-
sual similarity between the query image and the results is
a similar color distribution.

Adding more advanced computer vision algorithms
such as object categorization would be highly beneficial

1http://www.tineye.com
2http://www.macroglossa.com
3http://images.google.com/
4http://www.google.com/mobile/goggles
5http://www.tineye.com/faq#similar

Web Service Interface

Image processing

Image Category, detected visual 

objects, similar images, etc

Detected 

chair
Similar objects

Figure 1. Conceptual overview of online computer vision ser-
vice. Service takes a single image as a query, relays it for pro-
cessing on cluster of machines and returns a result in a form of
recognized category, detected objects, similar images, etc.

as it could provide more information on objects that have
not been previously seen but belong to a known category
of objects. This would in turn open up the service for
multitude of applications. For instance, the service could
provide a cloud-based machine vision for robotic systems,
or it could be used as a back-end for an application that is
capable of poisonous plant or dangerous animal identifi-
cation.

Most of the existing online computer vision services
provide only simple image similarity searches. We show
in this paper how advanced computer vision algorithms
can be implemented as a cloud-based application to pro-
vide an online service. Simple offloading of computer
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Figure 2. Two examples of Google Image Search on unknown images. Returned similar images match only based on color distribution
but ignore any other information such as visual category.

vision processing to a single server has already been
done [5, 7], but they implemented the algorithm on a sin-
gle server which does not scale well and cannot be directly
distributed across many servers. In our paper we therefore
focus primarily on describing a system that can efficiently
run computer vision algorithms on a cluster of machines.
We analyze requirements for such a system for providing
online service, describe our implementation and provide
some performance analysis. The architecture of the sys-
tem we are describing is general enough to allow for im-
plementation of different kinds of computer vision algo-
rithms, thus providing variety of services such as: detec-
tion of objects in images, recognition and identification of
different visual categories or content based image search,
not just based on color distribution but based on objects
and visual categories identified in the query image. In our
paper we demonstrate this service on a problem of object
categorization using HoC descriptor [8].

This paper is structured as follows. In Section 2 we
state the requirements that a computer vision algorithm
must meet, the architecture is presented in Section 3 and
the implemented computer vision algorithm is presented
in Section 4. In Sections 5 and 6 we analyze in more detail
how different back-end aspects of the service can be im-
plemented and provide a general implementation details
on user interface in Section 7. In Section 8 we provide
some performance analysis of implemented service and
conclude the paper in Section 9.

2. Requirements
We first present the following requirements for our sys-

tem:

• providing an online service (a web-service) for com-
puter vision algorithms,

• capability of distributed processing in a cluster of
machines (a cloud),

• ability to handle hundreds of requests per second.

Running a system on a cluster of machines requires that all
the implemented algorithms run distributed in order to uti-
lize the resources as efficiently as possible. By distribut-
ing the processing across a cluster we also enable efficient
scalability. Adding new machines to the cluster should be
a straightforward process and should automatically pro-
vide higher throughput to handle more and more requests
easily as the service expands.

Additionally, the system has to function as a service.
This requires the system to handle requests that come ei-
ther directly from the internet or from any underlying sys-
tem using this service. Each request comes in a form of
an image and the system has to be able to process it with
computer vision algorithm and return a result in the form
of a category or objects detected in the image or similar
images. A general overview is depicted in Fig. 1.

As a service, the system also has to enable handling
hundreds of requests simultaneously and process them
sufficiently fast. This puts additional constraints on the
algorithms that we can use. In general, the recommended
tolerable waiting time (TWT) for web pages is approxi-
mately 2 seconds [6], but that number can vary for dif-
ferent applications. In our case, any algorithm capable of
processing the image in up to five seconds or less should
be acceptable for a multitude of online applications, while
any further processing delay might deter the user from us-
ing this service.

3. Architecture

Many computer vision algorithms are divided into two
stages: (i) learning and (ii) testing/classifying. We there-
fore implement two different subsystems. The first sub-
system corresponds to the learning stage. As we also have
to meet the required resource efficiency utilization by dis-
tributing the processing across different machines in the
cluster setup, we term this subsystem as distributed learn-
ing. The second subsystem provides a testing/classifying
stage. This subsystem is also the main part of the system
that has to be connected to the input of our web-service
and in real-time provide results on each query requested
by the user. As such we call this subsystem real-time
stream processing. We also implement a third subsystem
called Web Service Interface that provides service API
over the internet.

All subsystems have completely different assignments
within the framework and are therefore implemented us-
ing different techniques. Distributed learning has to pro-
cess relatively high number of training images (from thou-
sands of images and upwards) therefore this process can
be best distributed across a cluster by transforming it into
a MapReduce [3] problem. In this domain the problem is
represented by a set of input items which are processed
with a Map and a Reduce function. By transforming the
algorithm to a MapReduce domain a problem now be-
comes relatively straightforward to be distributed across
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Figure 3. Architecture of the system providing a computer vision service. Service is divided into learning subsystem handling any
learning and training of library, models, etc, and into real-time processing subsystem handling incoming request and generating results.

cluster machines, provided that each item can be pro-
cessed with Map and Reduce function independently of
other items. In our case we treat each training image as a
single item. Any part of a computer vision algorithm that
can process images independently can be trivially trans-
formed into this domain. More complex parts would have
to be re-factored in order to efficiently run on a cluster of
machines.

Real-time stream processing must be implemented us-
ing different technique as its job and requirements are
completely different. This subsystem is directly con-
nected to the web-service and must serve hundreds of re-
quests and return corresponding results in near real-time.
For each query this system has to process a single im-
age. Transforming this subsystem into MapReduce do-
main would not be possible since that system works as a
batch processing of jobs, where all input data is known in
advance. But in this subsystem we have to continuously
handle requests that are coming into the system and there-
fore we do not know in advance how many request we will
have. The best way to efficiently run computer vision al-
gorithm on a cluster of machines would be to assign each
request to a single machine for processing.

Web Service Interface subsystem provides API for ac-
cess to the service and additional user interface in a form
of a web site and an Android application. The subsystem
also has to enable communication with Real-time stream
processing subsystem. Web Service Interface has to work
as a relay between the user and Real-time stream process-
ing by forwarding the request from user for further pro-
cessing and retrieving the results, which are then relayed
back to the user. Graphical representation of all three sub-
systems can be seen in Fig. 3.

4. HoC-based object categorization

In general, the algorithm for image processing can be
a multitude of different computer vision algorithms but
in this paper we demonstrate the system on the problem
of multiclass object categorization. For object categoriza-
tion we use the LHOP [4] based HoC [8] descriptor with
an SVM [2] classifier. The advantage of using this algo-
rithm is LHOP’s efficient inference. As the service has to
enable quick response to user’s query, this method with its
efficient inference allows us to quickly process the image
and generate the HoC descriptor. The descriptor based ap-
proach is used on the whole image. Therefore our system
provides only object categorization service and not object
localization or detection. In this section we briefly de-
scribe the process of categorization using HoC descriptor
and refer the reader to [8] for further details.

Histogram of Compositions is a shape-based descrip-
tor which uses learning of shapes to find only shapes and
structures that are most relevant for object description.
Relevant shape fragments identification is achieved by the
learning process of learnt-hierarchy-of-parts [4] (LHOP)
model, which produces a vocabulary of hierarchical com-
positions. This compositions are then further used in the
process of constructing the HoC descriptor.

Constructing a HoC descriptor H from an image is a
two step process. In the first step, image is processed with
a previously learnt LHOP library L to produce a list of
compositions {πk}k=1:K . Since LHOP represents shapes
using hierarchical compositions we produce a list of com-
positions for each layer of hierarchy. DescriptorH is then
constructed in second step from compositions of the de-
sired layer(s) {πk | πk ∈ selected layers}. This pro-
cess applies partitioning scheme ofM -regions and creates
small histograms of compositionsHm of each region that
form a part of a final descriptor H = α[H1, ...HM ]. This
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descriptor is then further used in an SVM to perform the
final step in the object categorization.

5. Distributed learning subsystem
In this section we detail implementation of distributed

learning for object categorization using HoC descriptor.
We define the process of learning as follows:

Input: L is a pre-learnt LHOP library and {(Ii, ci)}i=1:I

is a set of training images Ii each annotated with a
proper visual category name ci ∈ C.

Output: {mj}j=1:J is a set of SVM models representing
trained model mj for each different category found
in the set of category names C.

Algorithm steps:

1. Process each image Ii from the set of training im-
ages (Ii, ci) with an LHOP model to produce com-
positions πk for the whole hierarchy:

P(Ii,L) = {πk}k=1:Ki
.

2. Generate HoC descriptor Hi for each image Ii pro-
cessed with an LHOP model that produced the list of
compositions {πk}k=1:Ki

.

3. Group HoC descriptors Hi based on its category la-
bel ci and train SVM model mj for each grouped
visual category cj :

svm({Hi}i=1:I , cj) = mj .

We use our implementation of LHOP [4] and HoC [8], and
LIBSVM [2] for support vector machine.

Before translating our problem into MapReduce do-
main we first provide basic MapReduce notation and
refer the reader to [3] for more detail. Input for a
MapReduce problem is always an array of key-value pairs
{(κinputl , ωinput

l )}l=1:L (shown as (a) in Fig. 4) that gets
processed with two different functions. First with a map
function M to produce (b) intermediate result of a key-
value pair :

M : (κinputl , ωinput
l ) 7→ (κinterl , ωinter

l ).

All intermediate pairs are then grouped by their keys into
(c) N different groups {(κintern , {ωinter

o,n }o=1:On
)}n=1:N .

Each group with the same key is then further processed by
a reduce function R that returns (d) final key-value pairs
for each group with the same key:

R : (κintern , {ωinter
o,n }o=1:On)) 7→ (κoutputn , ωoutput

n ).

A simple graph of this process is depicted in Fig. 4. We
can now transform each step of our object categorization
procedure into a separate MapReduce problem and con-
nect them together by chaining output of each step into
the input of the next step.
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Figure 4. MapReduce processing pattern. Set of input pairs (a)
gets processed in parallel by Map function then this intermediate
result (b) gets grouped by its keys and each group (c) gets finally
processed in parallel by Reduce function to produce final output
(d).

5.1. Object categorization learning as MapReduce

In the first step we have input in a form of list of train-
ing images with category labels, which we now represent
as MapReduce input pair with empty key and value as im-
age with category:

κinput_LHOP
i = ∅,
ωinput_LHOP
i = (Ii, ci).

Processing with LHOP library can then be eas-
ily represented as a MapReduce map function
MLHOP ((κinputi , ωinput

i )) = P(Ii,L), while re-
duce function RLHOP is not needed in this case.
Intermediate result of map function is directly result of
MapReduce process for this step which in this case is
represented as empty key and list of compositions with
category name as value:

κoutput_LHOP
i = ∅,
ωoutput_LHOP
i = ({πk}k=1:Ki

, ci).

The second step is transformed in a similar manner.
We first chain output of previous MapReduce step directly
into input pair of current step:

κinput_HoC
i = ∅,
ωinput_HoC
i = ωoutput_LHOP

i = ({πk}k=1:Ki
, ci).

Map functionMHoC in this case generates HoC descrip-
tor, while reduce function RHoC is not needed, so inter-
mediate output of map directly becomes output of the cur-
rent MapReduce step, in which we return an empty key
and HoC descriptor with category label as value:

κoutput_HoC
i = ∅,
ωoutput_HoC
i = (Hi, ci).

For the last step, which is SVM training, we need to
distribute processing not by images, but by all the possi-
ble categories as training of a single category will require
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Figure 5. The process of learning visual categories using HoC descriptor and support vector machine. In general process is composed
out of three different Hadoop jobs: LHOP processing, HoC generating and SVM training. We merge first two steps to avoid costly
read/write to HDFS.

descriptors from all training images. However we can still
train a single category independently of other categories.
Additionally, we leverage the number of cluster machines
to implement a simple grid optimization of SVM param-
eters. We achieve this by adding additional input pairs
for each parameter configuration we check. We can now
write the last step as MapReduce problem with input pair
as category name for key, and HoC descriptor of all train-
ing images together with specific SVM parameter values
for the input value

κoutput_SVM
j = cj ,

ωoutput_SVM
j = ({Hi}i=1:I , svm_params).

Map function is then implemented as an SVM training
MSVM = svm({Hi}i=1:I , cj , svm_params) which re-
turns category name for key, and a trained SVM model
with some performance metric p for value:

κinter_SVM
j = cj ,

ωinter_SVM
j = (mj , p).

The reduce is then implemented as a max function across
all the trained models for specific category:

RSVM (cj , {(mo, po)}o=1:Oj ) =

(cj , argmax
po

({(mo, po)})).

The result of reduce function is then a set of pairs with
category names and appropriate best-performing SVM
model (cj ,mj).

5.2. Hadoop as MapReduce implementation

There are many available implementations of MapRe-
duce. We have chosen Apache Hadoop [9] which is an
open source implementation written in Java. It is intended
for processing of BigData (tens of Terabytes of data) as
a batch of jobs and is easily scalable up to 1000 or more
nodes (machines). Hadoop also comes with its own ver-
sion of distributed file system called Hadoop Distributed
File System (HDFS), which holds all the input and output
data as well as any intermediate results.

Distributed learning subsystem can now be imple-
mented as batch of three different Hadoop job jars that

run in a sequence. In the first job we read images from the
database, process them with LHOP and save results onto
HDFS file-system. The second job waits for all the im-
ages to be processed, then reads them from HDFS, gen-
erates appropriate HoC descriptor and saves them back
to HDFS. The final job waits until all the HoC descrip-
tors are generated, reads them from HDFS and generates
appropriate number of SVM problems for each category
which are then trained on the cluster. The final job creates
SVM models and sends them to real-time stream process-
ing subsystem. This sequence of jobs is depicted in Fig. 5.

We noticed that, between each job, we write results in
HDFS file-system and then read them again for the next
job. This presents a possible bottleneck as access to HDFS
can be expensive. Therefore we additionally optimize the
sequence of jobs by merging the first and the second job
together. In this way we generate HoC descriptor immedi-
ately from the image processed with an LHOP model that
is still loaded in memory and can therefore avoid writing
and reading results of the first job. Since HoC descriptor
can now be generated immediately after the image is pro-
cessed, we also eliminate any delay between the first and
the second job and thus optimize the process even further.

6. Real-time stream processing subsystem
In this section we present a subsystem capable of han-

dling requests from the web-service, process them with
object categorization algorithm and provide appropriate
response back to the requester. We define the algorithm
required for this subsystem as follows:

Input: L is a pre-learnt LHOP library, {(cj ,mj)}j=1:J is
a set of trained SVM models and (ri, Ii) is a request
with an image Ii and request information ri.

Output: (ri, ci, pi) is a response to request ri with an im-
age classification category ci and SVM score pi.

Algorithm steps:

1. Process request image Ii with an LHOP model to
produce compositions πk for the whole hierarchy:

P(Ii,L) = {πk}k=1:Ki
.

2. Generate HoC descriptor Hi from image Ii pro-
cessed with an LHOP model that produced list of
compositions {πk}k=1:Ki .
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Figure 6. Example of Storm topology with two spouts connected
to five bolts.

3. Classify HoC descriptor Hi into a number of pre-
trained categories using SVM. We select category
with the best score pi:

ci = argmax
(cj,mj)

{pj = svm(Hi,mj); pj > 0},

if any score is higher then 0 or return empty category
otherwise. We return original request ri and category
classification ci with its score pi as result.

Implementing this kind of a system would not be pos-
sible with the Hadoop in MapReduce domain since in that
system we have to know in advance the number of input
items to process in order to split them in the most effi-
cient way for processing across different cluster machines.
While in our case input data would be unpredictably com-
ing into the system based on user requests. Therefore the
system does not know in advance how many requests we
will have. The best way to implement this kind of request
handling would be with a system of workers and queues
distributed across different machines where each worker
could then accept the workload as it arrives into the sys-
tem. To implement this design we use Storm6 which is
an open source distributed real-time computation system.
It provides all the necessary infrastructure of workers and
queues distributed across cluster machines and provides
convenient way for implementing applications on top of
this system.

Writing application on top of Storm requires to define a
topology. Topology is a digraph where nodes are process-
ing elements and are implemented either as spout or bolt,
and directed edges represent the direction of processed
data. A general example of Storm topology is shown in
Fig. 6. The work in this topology starts with a spout,
which can be hooked to the outside world and would be
generating (emitting) new data streams. A stream of data
would then be sent to the appropriate neighboring bolts.
Each bolt then processes the data and can emit its re-
sults as one or more new streams to its neighboring nodes.
The process continues until no more new data is emit-
ted. Processing in each node is handled by Storm and
gets distributed across the cluster according to availabil-

6http://storm-project.net

Request 
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Figure 7. Storm topology for object categorization processing
using HoC descriptor and support vector machine.

ity of workers therefore allowing for best utilization of re-
sources.

6.1. Real-time image categorization service as
Storm topology

We define our system of image categorization service
as Storm application by providing appropriate topology of
spouts and bolts. In our case we define one bolt for each
step of the algorithm and simply connect them in a se-
quence. Therefore a single bolt implementation represents
LHOP processing, one bolt represents generating HoC de-
scriptor and additional bolt represents classifying with the
trained SVM models. We also need to define one spout
which will wait for input requests and send appropriate
stream of data to the first bolt. Also additional bolt has to
be added at the end of the stream that will send response
in a form of a category name back to the original caller. A
graphical depiction of this topology can be seen in Fig. 7.

The above topology allows for handling of each request
by multiple workers across different machines as each bolt
can be processed simultaneously. But due to sequential
processing we still have response time that is the sum of
each individual bolt processing time:

tresponse = tLHOP + tHoC + J · tSVM + t̄,

where J is the number of categories and t̄ is the additional
time needed for communication between different bolts
and also between user and web-service.

Note, that we have implemented SVM classification
as a single bolt worker. This may not appear optimal at
first since we need to test descriptor against multiple cate-
gories which can be done in parallel. Thus implementing
SVM classification of each individual category as single
bolt might provide better results. In practice however, the
time needed for classification of all categories (100 cate-
gories in our case) in a single bolt was only 25% of the
response time with the other 75% representing the time
required for LHOP processing. Performance benefits of
using multiple bolts might become more noticeable with
higher number of categories but even in that case it would
still be more reasonable to handle a subset of categories at
once to avoid any additional delay of sending hundreds of
streams across the cluster.

7. Web service interface

As our system is intended to work as a web-accessible
service, we have implemented a simple web interface that
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handles user-interaction, relays the requests to the back-
end and displays the results to the user after the request
has been processed by the service.

7.1. Web site

The main component of our interface is a web-site writ-
ten in Python and JavaScript. The Python part accepts
requests, validates input images (size and type) on the
server, equips them with additional meta-data and pushes
jobs to a Beanstalk7 incoming queue. Once the job is
processed, the results are inserted to a database by a dae-
mon process where they are available to the service. The
JavaScript part of the interface handles smooth transitions
of the browser interface.

As security of the system is important the computa-
tional back-end is located on the local network and is con-
nected to the public web server that runs the interface
front-end using a persistent encrypted tunnel. This rela-
tion is illustrated in Fig. 8.

7.2. Android front-end

In our internal user-experience study we have found
that a classical web-interface could be improved by al-
lowing user to quickly capture and submit new images as
queries. As nearly all mobile smart-phones and tablets
now days contain a high-resolution camera, we have cre-
ated a prototype Android application to streamline the
process. The application enables users to capture images,
uploads them to the web-service and displays the result.

8. Performance
Evaluation of our system was performed by imple-

menting both subsystems on a cluster of three machines
7http://kr.github.com/beanstalkd/
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tLHOP tHoC J · tSVM t̄ tresponse

1547 ms 85 ms 462 ms 48 ms 2144 ms
Table 1. Response time of object categorization service using
Storm processing.

each with more than 30 CPU cores and more then 80
GB of memory. For Hadoop system we assigned 35 slots
on each machine which allows simultaneous execution of
105 Map or Reduce functions. The distributed learning
was preformed on all 9124 images of Caltech-101 dataset
with 103 categories (with background images and separate
faces and faces_easy category). We also added mirror im-
age for each training example. This produced 18248 dif-
ferent training examples. We evaluated the performance
of distributed learning subsystem by varying the number
of training examples and timing each Hadoop job with
any additional time for framework setup. The results are
shown in Fig. 9. We were able to learn all 103 categories
with 18248 images in less then 40 minutes but there is
also some room for improvements as Hadoop jobs took
less then 30 minutes. Based on the observed numbers we
can see that we can easily learn Caltech-101 in less then an
hour and since learning could be done only occasionally
(depending on newly gathered image dataset from crawled
web pages or user feedback once or twice a week could
be enough) we could easily scale our system to hundred
of thousands or even millions of training images as this
could be processed in a day or two.

Evaluation of real-time stream processing subsystem
was performed on a single machine with 8 CPU cores
where we assigned 4 slots for Storm task processing. We
evaluate only response time of a single query and provide
theoretical extrapolation for max server load. Results of
the evaluation can be seen in Table 1. We tested the server
with 20 different images and provide an average time for
each component. Assuming we can use the same cluster
as for Hadoop (105 nodes) we can calculate the maximum
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number of incoming requests that we can handle. Using
queueing theory [1] we can define our Storm application
service as M/M/105 queue model, where arrival rate λ is
according to a Poisson process and service times have an
exponential distribution with parameter µ. Based on ob-
served averaged processing time tresponse = 2.144 sec
we can set the service time µ = 0.4664 sec−1 and calcu-
late the maximum arrival rate before the system’s queue
grows to infinity (i.e. when ρ > 1):

ρ =
λ

m · µ,
where m = 105 is number of processing servers. We cal-
culate the max arrival rate λmax = m · µ = 48.9720,
which tells us that our service would be able to handle
48 requests per second before the queue would start to
grow to infinity. The observed response time and a cal-
culation of handling 48 requests per second in a cluster
of 105 nodes could effectively allow us to use the system
for multitude of online services. Scaling to any more traf-
fic or requests would only require additional computing
power which can be added trivially even without stopping
the existing service thanks to flexibility of the Storm and
Hadoop systems.

9. Conclusion
In this paper we presented implementation of a com-

puter vision algorithm as an online web-service and an-
alyzed the efficiency of implementation on a distributed
processing platform. In particular we implemented a ser-
vice for object categorization using HoC descriptor [8]
and a support vector machine [2]. We divided the architec-
ture of the system into two stages: distributed learning and
real-time stream processing. The first part was respon-
sible for the learning and was implemented in MapRe-
duce [3] domain as a Hadoop job. While the second part,
real-time stream processing, was responsible for handling
online service requests and was implemented as a Storm
application. An additional part of the system was also the
web-service interface that acted as an relay between users
and distributed processing platform. We implemented it
as an web site and also as an Android application.

We analyzed the performance of each stage on a clus-
ter with more then 100 CPU cores. The system was able
to complete the learning phase in less than an hour for
Caltech-101 dataset with around 18000 training images
and more then 100 categories. Accounting for infrequent,
runs and based on performance analysis, we have shown
that such system should be able to scale to hundreds of
thousands or even millions of training images. The analy-
sis of the second part, the real-time stream processing, has
shown that our service has response time of around 2 sec-
onds which is completely adequate for multitude of online
applications. We also showed that the system deployed on
a cluster of 105 nodes should be able to handle 48 requests
per second and we could easily scale to higher number by
adding additional machines to the cluster.

Note, that the presented system can potentially be used
not only as an online computer vision service but by
adding user feedback to the web interface we could use
the system as image annotation tool. For instance, a user
might be able to provide a feedback for each missing
object or improperly classified category. This data can
then be collected by the system and used to generate new
dataset of training images. This dataset could augment the
existing training images and together with retraining en-
able better performance of the whole service. We would
like to implement this extension in our future work to-
gether with some other small optimizations. Additionally,
we would also like to extend the system from only ob-
ject categorization to object detection and localization. In
our future work we will use the system for implementing
content-based image search that would take into account
information about object categories found in the image.
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Abstract.
3D reconstruction from sets of images has reached

a high level of maturity, but there is still a lack of au-
tomated understanding in terms of semantics. In this
work we propose a technique to detect changes in 3D
reconstructions that are acquired over time. Given
multiple sparse 3D reconstructions, that are aligned
in a canonical coordinate system, a semi-automated
procedure generates dense information on a region of
interest and relates this information overtime by us-
ing a novel representation of geometric change based
on inverted distance fields. For evaluation, we per-
form experiments on synthetic datasets as well as on
real world images.

1. Introduction

The automated detection of change from visual
data is a very active research topic due to enormous
amount of available imagery on the Internet and cost-
effective visual data acquisition by digital technolo-
gies. In particular, the redundancy in the avail-
able data enables the generation of scene geometry,
which supports the detection of change directly in the
third dimension [21]. Typically, the change detec-
tion based on geometry overcomes the typical prob-
lems of well-established image to image comparison
like variations in illumination, seasonal changes and
changes in view points.

Recent approaches for 3D reconstruction enable
the accurate mapping of real scene observations into
virtual world representations. Such approaches take
into account large collections of still images [19, 12,
1] or even active sensors like Kinect [16] or Time-of-
Flight [5]. Although 3D reconstruction has reached
some sort of maturity, the understanding of the ac-
quired 3D model is till lacking in terms of semantics.
Popular scene understanding approaches [13, 8, 4]

would benefit from time-dependent 3D scene obser-
vations due to additional scene knowledge like scene
dynamics or foreground-background situation.

Most of recent reconstruction algorithms focus on
creating 3D reconstructions of a scene without con-
sideration of the timestamp of the image acquisi-
tion [19, 1]. However, the processing of time sorted
data sets enables the generation of individual 3D
models, which typically map the as-built situation
at individual time steps. Relating and linking the
models within a common spatial world enables the
creation of 4D representation enabling a highly auto-
mated procedure of detecting change in the observed
scene. Additionally, the detected change supports the
quantification of increasing and decreasing volumet-
ric changes which can also be used for improved ma-
terial flow estimation, object counting or visualiza-
tion.

In this paper, we thus address the task of a user
driven change detection within a 4D representations.
The main contribution is an efficient approach for 3D
change detection that takes into account real-world
scene information e.g. mapped by overlapping im-
ages. Based on tuples of reconstructed scenes, we
propose a generic concept to consider time depen-
dent 3D observations by inverted distance field rep-
resentations in order to localize and quantify volume
differences in the third dimension.

The remaining part of the paper is structured as
follows: In Section 2 related work is summarized, in
Sections 3 and 4 we describe our method in detail.
Section 5 highlights the performed experiments on
synthetic and real data. In Section 6 we conclude our
work and discuss future work.

2. Related Work

Detecting geometric change in large scale scenes
in high quality depends on creating surface models
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and implicitly high resolution volumetric models of
some kind for the complete scene. This is compu-
tationally very demanding and can be accelerated by
computing change only for a region of interest. We
present a method for geometric change detection that
uses a user selected key frame to select the region of
interest and present a novel volumetric change detec-
tion algorithm. The change is computed directly on
the signed distance function implicit surface repre-
sentations. No direct surface extraction for the in-
dividual data sets is necessary, as opposed to the
method of [21]. In [22], a simple 2.5D change de-
tection algorithm based on ortho view image differ-
ences is presented. Our method in contrast computes
full 3D change surfaces.

Change detection algorithms that are based on ap-
pearance change have been a popular research topic
in the past. For one static camera, appearance based
background models like [20] have a long history
in computer vision. Generalizations of appearance
based learning methods to multiple views are pre-
sented in [17].

Our approach computes the geometric change of a
scene by taking two implicit surface representations
of the area of interest. The geometry of the individual
data sets is represented by signed distance volumes
that are obtained by multi-view stereo for the data
sets at each time step. The change surface is com-
puted as the iso-surface of the signed distance change
volume. The signed change volume is obtained from
a pair of signed distance volumes.

3. 4D Scene Mapping

In this Section, we describe some preliminary pro-
cessing steps in order to visually map a scene of inter-
est from images into a virtual world. Our work is fo-
cused on the detection of changes that happened over
time, we thus outline how to generate a 3D model
that also takes into account the aspect of time. In the
following, we denote time-depending 3D models as
4D representation.

In order to be able to detect changes in 4D over
time, 3D scene data sets have to be estimated from
overlapping images initially. To obtain accurate
3D information, we utilize well established proce-
dures and methods. In a first step, Structure from
Motion (SfM) is applied to estimate sparse geom-
etry and camera poses for the defined timestamps.
Since the sets of images, collected at specified times-
tamps, are processed individually, the obtained re-

sults are typically not aligned within a common co-
ordinate system. We thus apply an iterative scheme
to estimate transformations that align the SfM re-
sults (3D points and camera poses) to a defined ref-
erence model within a common world. Finally, we
are now ready to perform multi-view matching based
on plane-sweeping to densify the SfM point clouds
time-dependently.

An area-based multi-view matching algorithm
produces dense range images for each image in the
image sets. Initial range images are computed from
overlapping images (a reference image and N best
fitting neighbors) with the plane sweeping approach,
as described in [3]. In order to determine the best fit-
ting neighbors, we consider both the median triangu-
lation angle and image overlap according to the con-
vex hulls computed over determined SIFT [15] key
locations from SfM. We use plane sweeping because
it is a robust approach to compute a depth image from
multiple views. Image rectification based depth esti-
mation in contrast is not possible for all camera mo-
tions.

For the key-view, a corresponding 3D space (the
relevant sweep space is determined from visible 3D
points) is traversed by fronto-parallel planes at dif-
ferent depth steps. For a plane at depth d, a homog-
raphy H can be estimated from the relative pose be-
tween the reference view and the sensor view, which
maps the sensor view onto the plane. Taking into
account the reference and projected sensor views, a
correlation measurement can be computed and ag-
gregated for every pixel and its local neighborhood
(typically 3, 5 or 7 pixels). In case of a potentially
true depth hypothesis, the correlation would be high.
In our case, we use truncated zero-mean normalized
cross correlation (ZNCC) [9] as similarity measure-
ment in order to implicitly handle occlusions and to
be invariant to illumination changes. To obtain the fi-
nal depth estimates for each pixel in the range image,
we utilize a rapid winner-takes-all (WTA)[18] strat-
egy, where we choose the corresponding depth value
with highest ZNCC value obtained for the multi-view
matching procedure.

4. Change Detection

This part presents how we compare two data sets
and highlight their differences. We call a data set
an acquisition of the scene at a given timestamp. It
is composed of all the photos, all the camera posi-
tions and the sparse geometry of the scene (i.e. the
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point cloud) related to its acquisition. In order to de-
tect if an object appeared or disappeared, we define
which data set is the reference (DSR), and which one
is compared (DSC).

4.1. View point selection

Our algorithm takes depth information from the
range images and fuses them into a voxel space.
Computing high resolution voxel spaces for com-
plete scenes is very time and memory demanding.
Many parts of a scene are usually not of interest for
the user. To increase the voxel space resolution in the
area of interest and reduce computational time, we
use a region of interest for change detection. The re-
gion of interest operator in this work is simply a user
selected reference view chosen inDSR. This camera
is called C0

R. The difference is then computed for a
volume in this viewing frustum, so that every change
which is not in the field of C0

R is ignored.
The next step is to find the closest camera in DSC

which see the scene under the same point of view as
C0
R. As in the plane sweep algorithm [3], this is done

by considering both the median triangulation angle
and the image overlap. The best fitting neighbour
camera C0

C is set as the reference camera in DSC .

4.2. Voxel space creation

In order to construct the voxel space V , the first
thing to do is to determine the bounding box B of
the region of interest. This region is composed of the
3D points visible both in C0

R and C0
C . Consequently,

B is the intersection of the reference bounding box
BR and the compared bounding box BC .

This step is carried out for building both BR and
BC and their intersection gives B. The voxel space
is then built inside B with cubic and identical vox-
els. Its resolution is adjusted to the resolution of the
range images : to avoid aliasing after filling the voxel
space, its resolution is chosen bigger than the plane
sweep resolution.

Finally, each data set gets its own voxel space (VR
and VC) which has the same dimensions as V . We
note N{x,y,z} the number of voxels on each dimen-
sion, N = Nx×Ny×Nz the total number of voxels
and v(j) a voxel, where j ∈ {0..N}.
4.3. Voxel space filling

This part presents how to fill VR with the reference
data set, assuming that the procedure is exactly the
same for VC and DSC . The reference voxel space
is filled with the range image R0

R computed from

Figure 1: The opaque camera is the reference camera.
The other ones are chosen to look at the scene from a com-
plementary point of view.

C0
R with the plane sweep algorithm. In order to im-

prove the quality of the final result, it is possible to
use more range images computed from complemen-
tary views. The two following sections give details
of how these complementary views are chosen and
how their information are fused into VR.

4.3.1 Complementary views

Using only the reference camera stereo result to con-
struct the 3D model of the scene is generally insuf-
ficient because of occlusions. Similarly, as a depth
sensor has to be moved around an object to get a
well defined surface, like for example in [16], we se-
lect complementary stereo views Ci

R (i ∈ {0..n})
from the sparse reconstruction images to remove oc-
clusions. Depth imagesRi

R are computed again from
Ci
R with the plane sweep algorithm.
The selection criterion is that each new camera

must look at the scene from a new different point of
view and also cover a large number of 3D points vis-
ible from C0

R. Figure 1 illustrates how complemen-
tary cameras are chosen.

4.3.2 Data fusion

For range image integration we use and adapt a
method based on the signed distance field representa-
tion introduced in [6]. First, we defineMR as the 3D
real model of the scene for DSR. The goal here is to
compute this model by determining which voxels the
surface of MR goes through, given that the only in-
formations we have about surfaces are the range im-
agesRi

R. In this way, two values are assigned to each
couple (v(j), Ri

R), with i ∈ {0..n} and j ∈ {0..N}.
The first value is di(j). This is the signed distance
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value between the nearest surface of MR along the
sensor’s line of sight from Ci

R and the center of v(j).
The distance from the camera to the nearest surface
is contained in Ri

R : it is the value of the pixel where
the voxel’s center is projected. The second value
is wi(j). This is the unsigned weight that we take
equal to 1 if the voxel’s projection is inside Ri

R and
0 otherwise. Curless et al. [6] give another values to
wi(j), depending on the type of camera used to cap-
ture the image (quality, resolution, technology...). In
our case, every photo is taken with the same camera,
so we use a constant value. Figure 2 illustrates the
construction of the signed function di for one camera
in 2D.

(a)

(b)

Figure 2: Distance function di(j). (a) illustrates how to
fill one voxel. ds is the distance between the camera and
the surface (that we want to locate in the voxelspace) and
is readable in the range image. dv is the distance between
the camera and the voxel center. (b) shows a voxel space
in 2D. The red line is the position of the surface we are
looking for. Voxels in grey have an undefined value (not
a number). Voxels in green and blue are respectively pos-
itive and negative. The darker they are, the smaller the
absolute value of di(j) is.

In the original algorithm, the weighted combina-
tion of these two functions gives D(j). This is this
value that is stored in v(j):

D(j) =

∑n
i=0w

i(j)di(j)∑n
i=0w

i(j)
(1)

It is also possible to compute D(j) iteratively, by
using the cumulative formula:

Di+1(j) =
W i(j)Di(j) + wi+1(j)di+1(j)

W i(j) + wi+1(j)
(2)

W i+1(j) =W i(j) + wi+1(j) (3)

Di(j) and W i(j) are respectively the cumulative
signed distance and the unsigned weight functions
after integrating Ri

R. Finally, D(j) is normalized ;
it is divided by the size of a voxel, so that distances
are expressed in voxels. If

∑n
i=0w

i(j) = 0, then
D(j) is assigned to not a number.

Once VR is completely filled, it is admitted that the
voxels with value zero are traversed by MR. As for
the other voxels, the sign of D(j) indicates if v(j) is
in front of or behind the surface (from the size of the
surface whereC0

R is localised), and the larger |Di(j)|
is, the larger is the distance of the surface. The result-
ing estimated surface of the model is the isosurface at
the zero-crossing ofD(j). This zero-isosurface is ex-
tracted with the marching cubes algorithm described
in [14].

4.4. Voxel space comparison

At this point of the algorithm, VR and VC are filled
and contain informations about the 3D position of
MR and MC and the goal is to fill V that contains
the change. The principle we use consists in compar-
ing VR and VC element by element.

In this section, one voxel at the indice j (j ∈
{0..N}) is noted vR(j) and vC(j) respectively in VR
and VC . DR(j) and DC(j) are its respective stored
values. The values in DR(j) and DC(j) are further-
more clamped to the interval < −1...1 >. Lastly, the
voxels in V are noted v(j). We define the change dis-
tance field Diff(j) by using inverted distance field:

Diff(j) = 1− |DR(j)−DC(j)| (4)

Sign(j) = DR(j)−DC(j). (5)

Since we want to obtain the surface of the change, the
relevant part of the distance field is located around
the zero-crossings of the distance functions.
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Thus, if Diff(j) is close to 1, it means that
there is no changement from MR to MC in v(j). If
Diff(j) is close to 0, then v(j) belongs to the bor-
der between changement and no changement. Con-
versely, if Diff(j) is negative, the changement in
v(j) is significant. In this last case, the sign of
Sign(j) gives information about the type of change-
ment (new or missing object). When Sign(j) is pos-
itive, v(j) is a part of a new object in DSC , and if
it is negative, v(j) is a part of a missing object. Fig-
ure 3 illustrates the comparison of two voxelspaces
in 2D.

The surface S we are interested in is obviously
the zero-isosurface and is extracted with the march-
ing cubes algorithm.

5. Experiments and results

In order to evaluate our proposed method, we out-
line experiments on synthetic data and demonstrate
the robustness of our approach on real-world imagery
in a practical scenario additionally.

The first experiment is made with a very simple
and controlled change that we call synthetic scene,
see Section 5.1. The second scene, called real scene
described in Section 5.2, consists of real construc-
tion site data. Accurate, efficient and fast meth-
ods for monitoring building under construction, is a
challenging research problem, and image acquisition
seems to fit to this domain [7, 2].

5.1. Synthetic scene

We built two datasets (DS1 and DS2) of 40 and
42 images from the synthetic scene. In each acquisi-
tion, the scene was composed of the same objects lo-
cated at the same place, except a tea box which posi-
tion changed from DS1 (taken as reference data set)
to DS2 (taken as compared data set). Lastly, every
object is known, so we can easily measure their real
volume, and we know in advance the desired results.

Figure 4 illustrates the results of our algorithm ap-
plied to these two data sets. We can see that the re-
constructed meshes of both data sets match with the
photos. Just like the difference voxel space which
matches with the difference of the two reconstructed
meshes: except a few noisy voxels, the blue and red
volumes locate respectively the absence and the ap-
pearance of the tea box from DS1 to DS2.

The internal parameters used to obtain this result
are: the maximum number of disparities used for
plane sweeping is 250; the resulting dimensions of

Camera ID 9 15 16 23 28
Voxel size 0.051 0.051 0.051 0.052 0.052
Nb. new vox-
els 190 53 118 153 90

Nb. missing
voxels 7781 7825 8201 7650 7344

New volume
(cm3) 12.932 3.604 8.026 10.923 6.409

Missing vol-
ume (cm3) 529.60 532.13 557.83 546.16 522.95

Ratio to tea
box volume 1.026 1.031 1.081 1.058 1.014

Table 1: To do these measures, we fixed the bounding
box so that it contains the tea box in DSR and nothing in
DSC . Then, we used several cameras (camera ID) to ob-
tain different results. To compute the corresponding vol-
ume, we used the scale factor which is 7.986. The real
volume of the tea box is 8.5× 13.8× 4.4 = 516 cm3.

the voxel space is 125 × 65 × 49; only 1 similar
view is used to build each range image; 5 comple-
mentary views are used in addition to each reference
view to fill the voxel spaces. With these parameters,
we compared the real volume of the tea box and the
detected volume for different reference cameras in
DSR regarding the same scene. To achieve metric
scale we obtain the scaling factor from the distance
of two known world points. Table 1 gives the results.

The ratios of blue and red voxels show that there
is about the same volume that appears and disappears
from DS1 to DS2. Furthermore, the value of this
volume corresponds to the volume of the tea box.

5.2. Real scene

This real-world experiment is conducted on a data
set acquired at different timestamps of of a build-
ing construction process. The image acquisitions
have been made with an unmanned aerial vehicle
(UAV) [12, 11, 10]. Each data set was acquired at
an individual timestamp over a period of two months
and was composed of 146 to 292 high-resolution
photos. Figure 5 shows some visual data of the ac-
quired data set at timestamp 1. For each acquisition,
lighting conditions were different and the geomet-
ric changes result from new or missing structures,
moved machines or workers.

The results presented in Figure 6 are obtained
by comparing timestamp 1 (reference ; 159 photos)
and timestamp 2 (175 photos). For this experiment,
we set the maximal number of disparities for plane
sweeping to 250, using only 1 similar view for the
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(a) (b) (c)

Figure 3: (a) and (b) are VR and VC after truncation. The green and blue voxels are respectively negative and positive.
(c) is the comparison of VR and VC : the red surface is new from DSR to DSC and the blue one is missing. In these three
images, the red line is the implicit surface which is detected with the marching cubes algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: For each data set, six cameras are used (i) to do the reconstruction (in red and blue respectively for DSR and
DSC). Both reference camera (C0

{R,C}) are opaque and framed in black. (a-d) show the reference photo (taken from C0
R),

two of the six range images (R{0,1}
R ) used to fill the voxel space, and the reconstructed 3D model for DSR (seen from

C0
R). (e-h) show the same things for DSC . (j) is the merging of MR and the surface S, (k) of MC and S, and (l) shows S:

the red and blue surfaces mark off respectively the new and missing elements from DSR to DSC . (Best viewed in color)

generation of the depth images; the resulting vox-
elspace dimensions are 82 × 48 × 30. Since a met-
ric scale is missing in this experiment we performed
measurements to voxel counts where 14601 voxels
appeared (that is 12% of the total number of voxels)
between timestamp 1 and 2, and 3093 disappeared

(2% of the total number of voxels). Figure 6 presents
the visual results of the experiment.

5.3. Discussion

To get satisfactory results, we use an increased
number of complementary views in the synthetic
scene than in the real scene, resulting in an increased
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: (a) and (b) are the reference photo in DSR and MR. (c) and (d) are the reference photo in DSC and MC . (e-i)
show respectively MR, MC , S superimposed on MR, S superimposed on MC and S. (j-l) show a zoom on MR, MC , and
S superimposed on MR. In each, the red surface delimited the new volume, and the blue surface delimites the missing
volume. (Best viewed in color)

Figure 5: The 3D reconstruction obtained for the real-
world scene at timestamp 1. The point cloud and all the
camera positions are visible.

computation time. This is necessary because the syn-
thetic scene presents more homogeneous area, which
give bad results with the plane sweep algorithm, and
less precised range images. But the main reason
is that the reference point of view in the reference

dataset is above the scene, so there are less occlu-
sions. Without using an optimized implementation,
our processing chain needs in the range of 10 sec-
onds to give satisfactory real-world change detection
results1.

6. Discussion and Conclusion

In this work, we have presented a novel method to
accurately detect geometric change in 4D reconstruc-
tions. Having detected the change over time gives
information about the scene in terms of semantics
and can be used for further analysis in 3D space. In
the synthetic experiment we showed that increasing
and decreasing geometric volumes can be detected
accurately and that a quantitative evaluation within a
metric scale results in acceptable results. The real-
world experiments demonstrated practical applica-
tion scenarios in outdoor scenarios like construction
site monitoring. Although we highlighted results

1CPU at 2.20GHz, 3GB of RAM
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based on photogrammetric 3D reconstructions only,
the application of the proposed 4D voxelspace rep-
resentation e.g. with active sensors like Kinect or a
Time-of-Flight is straightforward.

Our proposed method has some limitations that we
would like to address in the future. The selection
of the complementary cameras is not optimal (we
choose them according to their position in compar-
ison with the reference camera). It could be interest-
ing to consider the geometry of the scene to choose
the best complementary views, or to improve directly
the camera positions during the acquisition [11]. Fi-
nally we would like to add semantic informations
to the detected volume, by propagating the 3D ge-
ometry change back to the input photos. For exam-
ple, a new object would be labelled and could be se-
lected. Our change detection formulation approach
could also benefit from robust volumetric regulariza-
tion methods. Approaches like the TV − L1 fusion
of [23] could be applied to our change detection.
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Abstract. We propose a method for the geometric
calibration of a projector. The projector calibration
is assisted by an un-calibrated camera. The use of
un-calibrated camera is motivated by the fact that
camera calibration errors may negatively influence
the projector calibration results. Since the projec-
tor projects the image instead of capturing, it can
be considered as a reverse camera. Therefore the
projector can be calibrated in a similar fashion like
camera. Regular shaped pattern like chessboard is
projected by the projector to a known plane, seen
by the camera and then used for calibration. The
re-projection error analysis is done for the calcu-
lated calibration parameters. For comparison, the
re-projection error of the CCD camera is also given.

1. Introduction

The techniques of 3D shape measurement and re-
construction are vastly used in computer vision, com-
puter graphics, robotics and intelligent manufactur-
ing systems. These techniques are usually adapted by
medical, rapid prototyping, defense and other numer-
ous industries. On the basis of their characteristics,
these techniques are divided into two subgroups. The
first group comprises of passive scanning techniques
that use two or more cameras to scan and measure
the depth of an object. These cameras are placed at
different positions and orientations and take the im-
ages of the object simultaneously. Triangulation is
then used for measurement of the 3D geometry. The
bottleneck in the passive scanning systems is point
correspondence. The task is to find image points in

two or more camera image planes that correspond to
the same 3D points in the scene. To cope with the
correspondence problem, various image processing
techniques are used.
The correspondence problem is not involved in the
active scanning method. In this method the projector
projects a structured light on the 3D geometry which
is usually captured by a single camera. Most com-
monly, the sinusoidal or binary fringe patterns are
used but there exist many other types of fringe pat-
terns as well [8]. During the past few years a lot of
work has been done on active scanning techniques
and many researchers have come up with diverse
ideas [4][3]. A simple 3D scanning system is shown
in Fig.1. Active scanning techniques for reconstruct-
ing and measuring the 3D geometry are fast, robust
and inexpensive. These days the decreasing prices of
projectors and cameras have made it easy to have an
affordable 3D measurement system. But before do-
ing any re-construction and measurement, the active
scanning system must be calibrated. Camera calibra-
tion has been heavily studied by the researchers and
different algorithms exist for it [8]. This article fo-
cuses on the geometric calibration of the projector
which deals with the calculation of intrinsic and ex-
trinsic parameters for the projector.
Before moving to further discussion, the definitions
of the two types of calibration patterns are given to
avoid any confusion.

• Printed chessboard: A regular chessboard pat-
tern of known dimensions printed on a page.

• Projected chessboard: A regular chessboard
pattern projected by the projector.
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Figure 1. An active 3D shape measurement system based
on fringe projection

1.1. Related work

Zhang et al. [9] make the projector able to capture
images of the printed chessboard. A camera assists
this process and the captured images are then used
for calibration. In their method, the main difficulty
lies in making the special setup of white and red light
illumination. Apart from this, heavy calculations to
find the absolute phase map make it a computation-
ally expensive and time consuming method. Li et al.
[5] also proposed the calculation of the DMD image
i.e. the image of the printed chessboard captured by
the projector with the help of a camera. These images
are then used to calibrate the projector. They also use
vertical and horizontal sinusoidal fringe patterns to
recover the points seen by the projector, thus mak-
ing it a computationally expensive method as well.
Gao et al. [2] also generate the image of the printed
chessboard seen by the projector using the geometric
transformations between camera, screen and projec-
tor. They use the red and blue chessboard pattern
like Zhang et al. [9]. Apart from that, too many im-
ages of the printed chessboard are used because when
they move the screen to a different position they must
take the image of the printed chessboard attached to
the screen in order to know the extrinsic parameters
of the camera. Our previously proposed method [1]
takes a similar approach as Gao et al. [2] but we
make the process of projector calibration much sim-
pler by using image of a single printed chessboard
and not using the red and blue light illuminations.
However generating the images seen by the projec-
tor using the geometric transformations makes that
method computationally expensive. Liao et al. [6]
have proposed the projector calibration by uncou-
pling the projector and camera. They use a calibrated
camera for calibrating the projector due to which the

errors of the camera calibration may affect the cali-
bration of projector. The other limitation is that they
use image of the printed chessboard for each posi-
tion of the screen in order to calculate the extrinsic
parameters of the camera.
We propose a simple yet accurate method for projec-
tor calibration by,

• making both the screen and camera stationary.

• using an un-calibrated camera to assist the pro-
cess of projector calibration.

• moving the projector to various positions and
orientation instead of the screen.

By adapting the above points we get the following
advantages.

• The transformation between camera and screen
is fixed therefore we need only one image of
the regular chessboard pattern to calculate this
transformation.

• The use of un-calibrated camera prevents the er-
rors of the camera calibration to get propagated
to the process of projector calibration.

• In methods where the calibrated camera is used
[2][6], it is necessary to move the screen to dif-
ferent orientations and positions to take images
of the projected chessboard for projector cali-
bration. Apart from that, for each new position
of the screen, the image of the printed chess-
board attached to the screen must be captured
to calculate the extrinsic parameters of the cam-
era. In our case, since we move the projector
and the screen is fixed, we only have to capture
the image of the projected chessboard for each
new position of the projector.

• Moving projector to various positions and ori-
entations makes our method very favorable for
the calibration of pocket projectors[7].

Rest of the paper is arranged as follows; section 2 de-
scribes the basic concept of planar homography and
calibration, section 3 sheds some light on projector
calibration, section 4 gives the 3D shape measure-
ment system setup, section 5 gives the results of ex-
periments and their verification in OpenCV and fi-
nally the conclusion and future work is given.
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2. Basic concept

Suppose a 3D point in the world co-ordinate
system with its coordinates with respect to the world
plane as Qw={Xw, Yw, Zw, 1}T is projected to a
point qcam={m, n, 1}T in the image plane of the
camera. Then according to pinhole camera model,

qcam = sMcam(Rcam|tcam)Qw , (1)

whereMcam is the set of intrinsic parameters of cam-
era and is given as,

Mcam =




fx 0 cx
0 fy cy
0 0 1




The parameters (cx,cy) are the co-ordinates of the
principal focus and fx and fy are the focal lengths
along the x and y axes of the image plane respec-
tively. [Rcam tcam] represents the transformation
matrix called extrinsic parameters. It gives the ro-
tation and translation between world and camera
planes. Extrinsic matrix of a camera is given as fol-
lows.

[Rcam tcam] =




r11 r21 r31 tx
r12 r22 r32 ty
r13 r23 r33 tz


 ,

or in short,

[Rcam tcam] =
(
r1c r2c r3c tcam

)

The projector can be considered as a camera that acts
in reverse manner. It projects the image instead of
capturing it. Therefore the pinhole camera model can
be applied to the projector as well. For a 2D-3D point
pair the equation of pinhole camera model for projec-
tor is given as follows.

qpro = sMpro(Rpro|tpro)Qw ,

where Mpro is the projectors intrinsic set of parame-
ters and [Rpro tpro] gives the extrinsic parameters of
the projector.

2.1. Planar homography

Planar homography is defined as the projective
transformation from one plane to another. In our
method, the mapping of known points from the
world plane to the camera image plane is an instance
of homography. Let ‘Qw’ be a point in the world
plane and ‘qcam’ is its corresponding point in the
camera image plane. Let both the points be presented
as follows.

Qw = [Xw, Yw, Zw, 1]
T , qcam = [m, n, 1]T

Based on the pinhole camera model, the relationship
between the two corresponding points is given ac-
cording to (1) as

qcam = sMcam(Rcam|tcam)Qw ,

where (Rcam|tcam) = [r1c r2c r3c tcam] ,
(1) can be expanded as,

qcam = sMcam[r1c r2c r3c tcam]Qw (2)

Without loss of generality the world plane can be
chosen in such a way that Z = 0. Therefore the 3D
point in the world plane becomes,

Qw = [Xw Yw 0 1]T

So (2) can be written as,

qcam = sMcam[r1c r2c r3c tcam][Xw Yw 0 1]T ,

or

qcam = sMcam[r1c r2c tcam][Xw Yw 1]T (3)

So planar homography is then a 3×3 matrix written
as follows.

H = sMcam[r1c r2c tcam] , (4)

and (3) can be written as,

qcam = sHQw (5)

2.2. Steps for camera calibration

Zhang’s method [10] for camera calibration is fol-
lowed in this work. This technique uses pinhole cam-
era model which has focal length, pixel size, and
skews factor as intrinsic parameters and the trans-
lation and rotation of the camera reference frame
with respect to the world reference frame as extrin-
sic parameters. The calibration is simply a process
that finds the intrinsic and extrinsic parameters of the
camera. A brief description of Zhang’s method is as
follows.
This method uses a regular shaped object e.g. a
chessboard pattern. Let qcam = {m, n, 1}T be
the 2D point in the image plane and Qw={Xw, Yw,
Zw, 1}T be the corresponding 3D point in the world
frame of reference. According to the pinhole camera
model

qcam = sMcam(Rcam | tcam)Qw (6)
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In (6), Mcam is the set of intrinsic parameters
and (Rcam|tcam) is the set of extrinsic parameters
whereas ‘s’ is an arbitrary scaling factor. It is as-
sumed that the model plane is at Z = 0, so (6) be-
comes

qcam = sMcam(r1c r2c tcam)Qw

The summary of the method is given as follows.

1. A regular shaped object like a chessboard is at-
tached to a flat and smooth plank of plastic.

2. Images of the object are captured by moving it
to various positions and orientations.

3. The feature points in the image are detected and
stored in a matrix called the ‘image points’.

4. The corners of the object i.e. chessboard are
measured in millimeters and stored in another
matrix called the ‘object points’.

5. Both of the matrices are then used to find the in-
trinsic and distortion parameters of the camera.

6. The set of extrinsic parameters of the camera are
calculated with the help of the intrinsic parame-
ters.

3. Projector calibration

As it is mentioned earlier that projector acts in
reverse manner of a camera, therefore the pinhole
model also applies to the projector. According to pin-
hole camera model,

qpro = sMpro(Rpro|tpro)Qw (7)

For calibration of the projector, a regular chessboard
pattern is projected on a screen and its images are
then used. Let qpro be the corners of the image of the
chessboard to be projected and Qw be their corre-
sponding projected corners of the chessboard. In (7)
qpro can be directly read from the image that the pro-
jector is projecting. To find the object points i.e. Qw

of the projected chessboard is a challenging prob-
lem. If the chessboard pattern is projected to a known
plane then the object points can easily be calculated.
To make the plane known, a known printed chess-
board is attached to the world plane i.e. the screen.
It is assumed that the world plane coincides with the
frame of reference of the screen. The camera takes an
image of this printed chessboard and then the camera
to screen homography is calculated. Let Qw be the

point in world plane and qcam be the corresponding
point in the camera image plane, then according to
(5) the homography from world plane to camera im-
age plane up to a scale factor can be given as;

qcam = sHw
camQw (8)

The corresponding chessboard corners in world and
camera planes are used to compute the 3×3 ho-
mography matrix. Once this homography is calcu-
lated, a regular pattern is projected by the projector
while moving it to different orientations and posi-
tions. Here it must be noted that the plane on which
the chessboard pattern is projected is known and sta-
tionary. For each position of the projector, the pro-
jected pattern is imaged by the camera and then the
homography from screen to camera is applied to this
image to calculate the corners of the projected pat-
tern. In other words these are the calculated object
points for each position of the projector. Let for ith

position of the projector, qpro be a point in the pro-
jector’s image plane. This point is projected to an
unknown point Qw in the world plane. The relation-
ships between qpro and Qw can be given from (7) as
follows.

qipro = sMpro(Rpro|tpro)Qi
w (9)

The point Qw is then imaged by the camera. Let the
imaged point be qcam. For the ith position of the
projector (8) can written as

qcam= sHw
camQ

i
w ,

or
Qi

w = s[Hw
cam]−1qcam (10)

Once the object points of the projected chessboard
are calculated, the image points are directly read
from the image to be projected. These image and
the object points are then used to calculate the intrin-
sic and distortion parameters of the projector through
Zhang’s method [10]. Since the projector is rotated
and positioned randomly, the projected chessboard
must be seen by the camera. In other words the pro-
jected chessboard must lie within the FOV of camera.
Fig.2 shows three different positions of the projector.
Fig.3 depicts the step-wise flow diagram of the whole
process.

Some images of the projected chessboard along
with their detected corners are shown in Fig.4. The
camera to screen homography is applied to these cor-
ners to obtain the object points i.e. corners of the
projected chessboard for projector calibration.
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Figure 3. Flow chart for projector calibration procedure

4. Reference frames setup

The relative position of camera and projector need
to be set with respect to a world coordinate sys-
tem i.e. a unique world co-ordinate system between

Figure 4. Projected chessboard images with detected cor-
ners under different positions and orientations of projector

camera and projector needs to be defined. This is
done with the help of the same chessboard pattern.
The projector is placed normal to the screen and the
chessboard is projected on the screen. The camera to
screen homography is applied to the projected chess-
board to measure the corners of the projected chess-
board. Then using these measured corners the ex-
trinsic parameters of the projector are defined. The
origin of the projected chessboard is set as the origin
of world coordinate. The x-y axes are on the plane
and z-axis is perpendicular to the plane. The origin is
selected due to the fact that OpenCV starts detecting
the corners from that corner. The reference frames of
camera, projector and screen are shown in Fig.5.

 

 

Zscreen  X screen

Yscreen

Screen

Ycam

Xcam

Zcam

 

Ypro

X pro

Z pro

 

Camera Projector

Figure 5. Reference frames of camera, projector and
screen

5. Experiments, results and verification

In this work the IDS uEye R© CCD camera is used.
The resolution of this camera is 1024×768. The
LCD projector used is EPSON EB-1735W with a
resolution of 1024×768. Fig.6 shows the setup used
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in this research.
To verify the result, re-projection error is calcu-

lated. To do this error analysis we need two images
of the regular chessboard pattern. The first image
is the projected chessboard from projector’s image
plane to the screen. The second image is the back-
projected chessboard from screen to projector’s im-
age plane. The back-projected chessboard image is
calculated using the projector’s intrinsic and extrin-
sic parameters. We call the image points of the im-
age to be projected as the measured image points and
the image points of the back-projected image as the
calculated image points. Therefore in our terms, the
re-projection error is defined as the Euclidean dis-
tance between measured image points and calculated
image points. Re-projection error is calculated in the
following manner.

1. Place the projector normal to the screen.

2. Project the chessboard to the screen and capture
its image.

3. Apply the screen to camera homography to cal-
culate the object points.

4. Back-project the object points by applying the
calculated intrinsic and extrinsic parameters of
the projector to obtain the calculated image
points.

5. Calculate the Euclidean distance between the
measured image points and the calculated im-
age points.

The re-projection error is shown in Fig.7. Table.1
shows the statistics of the re-projection error in pix-
els. For comparison, the re-projection error of the
camera is shown in Fig.8
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Figure 7. Re-projection error of projector calibration

image no Meanx stdx Meany stdy

1 0.013 0.384 -0.001 0.375
2 0.004 0.331 0.004 0.351
3 0 0.397 0.001 0.296
4 -0.010 0.567 0.001 0.456
5 -0.004 0.608 0 0.499

Table 1. Statistics of Fig.7 in pixels
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Figure 8. Re-projection error of camera calibration
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6. Conclusion

A simple yet accurate framework for projector
calibration is proposed. An un-calibrated camera
assists the process of projector calibration thus
avoiding the errors of camera calibration to get
propagated to projector calibration. Both the screen
and the camera are fixed and projector is moved
to various positions and orientation to take images
for calibration. Doing so avoids the movement
of the big screen as well as making the camera
to screen transformation constant. This constant
transformation is then used to calculate the corners
of the projected chessboard called the object points.
These object points are then used to calculate the
intrinsic and extrinsic parameters of the projector.
The re-projection error is then calculated for the
calculated calibration parameters and for comparison
the re-projection error of the camera is given as well.
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Abstract. Man-made environments contain many
weakly textured surfaces which are typically poorly
modeled in sparse point reconstructions. Most no-
table, wiry structures such as fences, scaffolds, or
power pylons are not contained at all. This paper
presents a novel approach for generating line-based
3D models from image sequences. Initially, camera
positions are obtained using conventional Structure-
from-Motion techniques. In order to avoid explicit
matching of 2D line segments in the various views
we exploit the epipolar constraints and generate a
series of 3D line hypotheses, which are then verified
and clustered to obtain the final result. We show that
this approach can be used to densify various sparse
occupied point clouds of urban scenes in order to ob-
tain a meaningful model of the underlying structure.

1. Introduction

Generating 3D models from a set of images has
become a widely studied field of research over the
last few years. The majority of available algorithms
is based on point correspondences between multi-
ple views using various local descriptors such as the
Scale-Invariant Feature Transform (SIFT) [13] in or-
der to obtain a 3D point cloud while simultaneously
estimating the camera parameters. This process
is called Structure-from-Motion (SfM). The density
of the resulting point cloud highly depends on the
amount of texture available in the images. There-
fore, point-based SfM may fail in man-made envi-
ronments with a low amount of distinctive interest
points (e.g. urban scenes, indoor scenes). To tackle
this issue, many line-based approaches have been
presented over the years, due to the fact that espe-
cially man-made objects (e.g. buildings) can usually
be represented by a set of 3D line segments. Similar

Figure 1. Two examples for wiry structures. The left im-
age shows a power pylon and the right image a scaffold in
front of a house.

to traditional SfM it is usually necessary to match 2D
line segments from various views to triangulate a 3D
line segment. This can be done using appearance-
based similarity measures, e.g. normalized-cross-
correlation (NCC) or line descriptors [12, 21], which
can be combined with additional geometric con-
straints [3]. Since the endpoints of matched line seg-
ments usually do not correspond to each other due to
inexact line segment detection or occlusions, creat-
ing 3D line segments from matched 2D lines is much
more difficult than traditional point-to-point match-
ing.

Most of the previous approaches rely on an accu-
rate line matching process between the various views
using some appearance-based similarity measures.
This usually works fine if the lines are located on
a planar surface with constant background, for in-
stance when matching window frames. However,
when dealing with wiry structures such as power py-
lons, bridges or scaffolds (see Figure 1 for some ex-
amples), appearance-based matching is hardly pos-
sible due to changing surroundings of the line seg-
ments in different views (see Figure 2). We present
an approach which is especially designed to handle
such cases but also performs well on solid objects.
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Figure 2. An example were no appearance based line
matching can be performed. Note that corresponding line
segments have different surroundings in both views (yel-
low lines).

2. Related Work

In the following we present selected papers from
the field of line-based 3D reconstruction. We
start with an overview of appearance-based methods
which cannot directly be applied to our problem but
share some ideas with our approach.

Baillard et al. [1] presented a method which
makes use of the epipolar constraint by estimating
line correspondences along the epipolar beam. To
find the correct match they evaluate the NCC score
for candidate lines using patches around the line seg-
ments. The estimated 3D line segment is the inter-
section of the half-planes through the lines of sight
of the two endpoints in both views. They further ver-
ify their hypotheses by minimizing the reprojection
error using the trifocal tensor [6].

Bay et al. [2] use optional region matches in ad-
dition to line matches based on color histograms in
order to establish an initial set of candidates. They
apply a topological filter in order to remove wrong
candidates and increase the candidate set by adding
unmatched line segments which fit to the topological
structure of the already matched hypotheses. They
further estimate the epipolar geometry using copla-
nar subsets of their candidate set. Very accurate re-
sults are reported, even for sparsely textured scenes.

In order to generate 3D line models for urban
scenes, Schindler et al. [16] proposed an approach
which takes vanishing point information into ac-
count. They assume that relevant edges are lo-
cated along mutually orthogonal vanishing directions
which reduces the degrees of freedom for 3D line es-
timation. Their approach delivers pleasant results for
urban structures but unfortunately is limited to pic-
tures taken at near-ground level due to their assump-
tions.

Another approach presented by Kim et al. [8]
is based on the intersection context of coplanar line

pairs. They match line intersection context features
across multiple views using NCC as similarity mea-
sure and reject false intersections using coplanarity
constraints on the corresponding line segments. The
proposed method works well for a wide range of sce-
narios even when only little texture is available.

Unfortunately, all of these appearance-based ap-
proaches usually do not perform well for wiry struc-
tures, since they technically do not match the line
itself, but rather its surroundings. In our case, ex-
plicit matching may be impossible, since the ever
changing background is not coplanar with the line
and often very far away from the object to be recon-
structed. In order to create 3D models without the
need of explicit line matching, Jain et al. [10] de-
veloped a sweeping based approach which defines
the unknown 3D locations of the endpoints of 2D
line segments as random variables. They estimate
3D line hypotheses by generating all possible end-
point locations in a certain depth interval (assuming
known camera intrisics and extrinsics) and keep the
one with the highest score based on the gradient im-
ages of many neighboring views. Hence, they create
a 3D line for every 2D line in every view. In order
to delete outliers and cluster corresponding line seg-
ments together, they group 3D line segments which
lie close in space and discard all segments which do
not have at least one such neighbor. They also per-
form an optimization based on 2D line connections
using loopy belief propagation to enforce connected
3D lines. Even though their approach delivers very
accurate results and is very robust against noise and
partial occlusions, it is very slow compared to previ-
ous approaches.

In our approach we build upon the principles pre-
sented in [10] but use a different matching strat-
egy. Instead of using a time consuming sweeping
approach we generate hypothetical 3D line segments
using epipolar constraints, which drastically limits
the number of possible 3D locations for each 2D line
segment. We will show that this leads to a significant
performance increase while still creating accurate re-
sults.

3. Sparse Structure-from-Motion

Given an unordered set I = {I1, ..., In} of
n images and the corresponding cameras C =
{C1, ..., Cn} we want to generate a set of 3D line
segments S = {S1, ..., Sk}. Since we do not per-
form explicit line matching and line-based relative
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pose estimation the cameras have to be known be-
forehand. For this purpose we use a point-based SfM
system. This limits the application to scenes where
interest points can be found, but we have seen that
we can usually find enough correct correspondences
for an accurate relative pose estimation in the back-
ground of wiry structures.

We follow the approach of Wendel et al. [20]
and Irschara et al. [9] which enables us to perform
sparse SfM for unordered image sets. The three nec-
essary processing steps are feature extraction, feature
matching, and geometry estimation. In the first step
we extract SIFT [13] features from all images. SIFT
has been shown to work well in general scenes [14],
but it also works surprisingly well in scenarios with
wiry structures. The reason is that matches are ob-
tained either in the background, or in the foreground
in case of a homogeneous background such as sky.
Afterwards, we match the resulting keypoint descrip-
tors between all possible image pairs and perform
a geometric verification procedure using the Five-
Point algorithm [15]. In order to eliminate possi-
ble outliers we use RANSAC [5] for robust estima-
tion. The resulting pairwise reconstructions are then
merged to obtain a sparse reconstruction of the scene.
Finally, bundle adjustment [17] is applied to mini-
mize the global reprojection error over all measure-
ments. See [19] and [7] for further details.

As a result we know the relative positions of all
cameras C in a common coordinate frame, and we
can thus proceed to the task of 3D line segment esti-
mation.

4. Reconstruction of 3D Line Segments

Our algorithm consists of three steps: 2D line seg-
ment detection extracts line segments from each in-
put image, 3D line segment hypotheses generation
tries to estimate the 3D position of these segments,
and finally 3D line grouping and outlier removal
merges corresponding segments from different views
and removes incorrect estimates. In the following
sections these steps will be explained in detail.

4.1. 2D Line Segment Detection

In order to generate triangulated 3D line segments
from a set of images, we first have to apply a line
segment detection algorithm onto our input images.
We employ the Line Segment Detector (LSD) [18]
algorithm to extract all relevant line segments with
as few incorrect detections as possible. The authors

Figure 3. Line Segment Detection. The line segments
extracted using the LSD [18] algorithm are visualized in
pseudo-colors. The underlying wiry structure is repre-
sented very well, except for a few outliers due to noisy
gradients, cause for instance by grass.

report their algorithm to be significantly faster than
previous methods while producing very accurate re-
sults. Their approach is based on the grouping of
points with a high gradient and similar level line an-
gle, followed by a least squares line fit. All detections
are validated using the Helmholtz principle [4] which
proves to be very effective for the general case. Fig-
ure 3 shows the detected line segments for a power
pylon image.

4.2. 3D Line Segment Hypotheses Generation

Assuming no false detections in the previous step,
every 2D line segment from image Ii corresponds to
a 3D line segment in world space. Since we can not
perform an explicit appearance-based matching pro-
cedure and triangulation, we have to estimate the cor-
rect 3D location of each segment in a different way.

As we know the projection matrix P i of the cam-
era, we are able to compute the epipolar geometry
between Ii and some other view Ij . Using the epipo-
lar lines ep and eq defined by the two endpoints p
and q of a certain line segment l in view i, we can
limit the possible matches for l to those line seg-
ments whose endpoints lie on ep and eq respectively.
In practice it is unlikely that we will find an exact
match with both endpoints being located exactly on
the epipolar lines, e.g. due to imprecise line detection
or occlusions. Therefore we extend all candidate seg-
ments which overlap with the region between the two
epipolar lines to infinity (from line segments to ac-
tual lines) and intersect them with ep and eq in order
to generate hypothetical matches. This enables us to
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find correct matches even if the current line segment
is shorter or longer in Ij (see Figure 4). For every
hypothesis we create a 3D line segment L by trian-
gulating the two corresponding endpoint pairs from
the two views Ii and Ij .

Since we usually have more than one hypothesis
for each 2D line segment (because the epipolar lines
do not provide enough information to perform exact
matching), we have to determine which one is cor-
rect. Therefore we adopt a gradient based scoring
approach similar to [11, 10]. We then backproject
each 3D line segment L into all neighboring views
N(Ii) of Ii with a camera center closer than a cer-
tain distance dc and an absolute viewing angle differ-
ence smaller than dang to the current camera Ci. For
each camera we compute a set of measurement points
M along and perpendicular to the backprojected line,
and compute the image gradient-based score

s(L) =
1

|N(Ii)|
∑

I∈N(Ii)

∑

x∈M(I)

‖∇I(x)‖
|M(I)| e

−( λ·dist(x,L)
2·distmax(L)

)2

(1)
for every 3D line segment L, where ∇I(x) de-
notes the image gradient at position x, dist(x, L) is
the perpendicular Euclidean distance to the backpro-
jected line in the current image I and distmax(L)
denotes the maximum distance based on the config-
uration of the measurement points. Assuming that
line segments correspond to high gradient areas in
images, this method ensures that we choose the hy-
pothesis which fits best to the image data. Using this
formula we give more weight to measurement points
which are closer to the backprojected line, and less
weight to those perpendicular to it depending on the
distance. An illustration is given in Figure 5.

After computing the score for each hypothesis we
choose the one with maximum score, denoted as
Lbest, which is then added to our 3D line segment
hypotheses set H . Since we generate 3D line seg-
ments for all views individually, we end up with a
quite large hypotheses set which has to be pruned.
Figure 6 shows an example for a 3D line model be-
fore grouping and outlier removal.

4.3. 3D Line Grouping and Outlier Removal

It is possible that the correct matches for 2D line
segments are not among the candidates, for instance
because the line segments are not redetected in any
neighboring view, and therefore we have to remove
possible outliers. The outlier removal process goes
hand in hand with the line grouping step which has
to be performed in order to remove multiple detec-
tions. Since we match and triangulate the 2D line

Figure 5. The left image shows the gradient magnitudes
from a power pylon image with a backprojected 3D line
hypothesis shown in red. The right image shows a close-
up of the line segment with the set of measurement points
M illustrated as yellow lines. The weighted sum of the
gradient magnitudes over all measurement points is com-
puted and then divided by the number of points in order to
compute the score for this view. The average score over
all neighboring views is then used to evaluate the best hy-
pothesis (see Equation 1).

Figure 6. 3D line segment hypotheses before the group-
ing and outlier removal procedure. Our approach gener-
ates 71538 segments from 106 views. Note that there is
a large number of outliers due to incorrect matches, but
the power plyon which appears in the imagery is clearly
recognizable.

segments individually for every view, the same 3D
line might be generated in multiple views. Assuming
a correct matching procedure, all the hypotheses in
H which correspond to the same 3D line should be
located close in space. Hence, a line clustering algo-
rithm is performed in order to generate the final 3D
line model.

In order to remove incorrectly triangulated 3D line
segments and cluster corresponding segments, we
adopt the idea of spatial proximity based grouping
from [10]. First, we order the hypotheses set H by
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Figure 4. We match the line segment L in view Ii with line segments from view Ij using its epipolar lines ep and eq . The
blue line segments are possible candidate matches because of their overlap with the region between the two epipolar lines.
The endpoints of the hypothetical line segments used for triangulation are shown as blue dots. The orange line segment
does not overlap with the epipolar lines and is therefore not considered to be a possible match.

Figure 7. To group corresponding 3D line segments to-
gether, the true segment L (green) is expanded by 10%
in each direction. All other line segments with both end-
points within a cylinder of radius r, defined by the new
endpoints, are considered to be in the same group as L
(blue lines). The red line does not belong to the group,
because one of its endpoints is outside the cylinder.

score in descending order to start grouping with lines
which are best aligned with the image gradients. For
each line Lm ∈ H we define a cylinder of a fixed
radius r by expanding the central axis of the line seg-
ment by 10% in both directions. We then try to find
all line segments Ln, n 6= m where both endpoints
are located within the cylinder (Figure 7).

If the final line group (including Lm) has at least
hmin members we consider it to be valid and exclude
all line segments in the group from further grouping,
otherwise Lm is removed from H and we continue
with the next best hypothesis.

After the clustering step, each group is replaced
with one single line segment for our final 3D line
segment set S. To define this line we first compute
the center of gravity of all line segment endpoints
from the group. Afterwards we perform a singular
value decomposition of the scatter matrix containing
all endpoints and take the eigenvector corresponding
to the maximum eigenvalue as new line direction. We
now project all endpoints onto the new line and add
the line segment defined by the two outmost points to
S. Figure 8 illustrates the outcome of the grouping

Figure 8. After the grouping procedure most of the outliers
have been successfully removed resulting in an accurate
3D model (1381 line segments).

procedure. Note that compared to Figure 6 most of
the outliers have been successfully removed.

5. Experiments

In the previous section we have already shown a
resulting 3D model of a power pylon. In this sec-
tion we want to present additional results and finally
compare our algorithm to [10] using one of their test-
cases.

5.1. Parameter Selection

The various steps of our approach require a set
of parameters in order to generate pleasant results.
Most of them are valid for a large number of scenar-
ios and therefore do not need to be especially tuned.

The line segment detection algorithm (LSD [18])
does not need parameters. In order to eliminate out-
liers and speed up the computation we reject 2D line
segments smaller than 1% of the diagonal length of
the image in pixels, which is usually sufficient to cap-
ture the underlying structure of our images.

During hypotheses generation we need to deter-
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mine which views are considered neighboring views
N(Ii) for the current view Ii (see Section 4.2). The
maximum viewing angle difference dang = 50◦ and
the maximum distance between the camera centers
dc = 30 for all our experiments. In order for the sec-
ond parameter to make any sense we need to know
the scale of our 3D model. In our experiments the
result achieved during preprocessing (camera estima-
tion) is transformed to a metric scale (1 ≡ 1m), using
either a marker with known size [11] or manual user
interaction. Assuming equidistant camera centers we
usually have a large number of views available for
scoring. In order to increase the performance (since
scoring has to be done for every 2D line segment
in every view) we limit the number of neighboring
views to 20.

For the scoring procedure we choose the set of
measurement points (M ) in a way that the distance
between the points on the backprojected line is 5 pix-
els. The number of perpendicular points is set to 5 in
each direction (with a distance of 1 pixel), meaning
that distmax = 5. The parameter λ is set to 10 (see
Equation 1).

The parameters for the grouping procedure are the
only ones which have to be estimated for each test-
case individually. For most scenarios setting r =
0.05 and hmin = 3 yields good results, meaning that
the grouping radius is 5cm and every 3D line seg-
ment has to be correctly estimated in at least 3 differ-
ent views.

5.2. Results

In traditional point-based SfM it is often the case
that the resulting point cloud is sparsely distributed
due to the lack of distinctive features especially for
man-made structures. Many of the keypoints may be
rather located on the background instead of the ob-
ject. Nevertheless, background features can be used
for relative pose estimation and therefore our line
matching algorithm can be applied in order to den-
sify the 3D model.

Figure 9 shows an example 3D point cloud of
a house surrounded by a scaffold, and Figure 10
shows a model of a staircase. As we can see, the
point clouds are rather sparsely occupied and the vis-
ible objects are difficult to determine for the viewer.
Adding 3D line segments clearly improves the re-
sult and allows the viewer to identify the underlying
structure.

Our algorithm is designed to handle wiry struc-

Figure 9. The top images show an example view from a
house sequence (93 images) and a SfM point cloud. The
bottom image shows the densified 3D model with the re-
constructed line segments.

Figure 10. The left image shows an example view from
a staircase sequence (14 images). The right image shows
the densified 3D model with the reconstructed line seg-
ments.

tures. Nevertheless, it is not limited to such sce-
narios and can also handle solid objects. In order
to compare our approach to [10], we reconstructed
their Timber-frame house sequence1 using our algo-
rithm. The sequence consists of 240 synthetic im-
ages. Figure 11 shows exemplar views from the se-
quence along with our 3D reconstruction and the re-
sult from Jain et al. [10], colored using the Hausdorff
distance as similarity measure (for densely sampled
points along the lines) to the ground truth model. Ta-
ble 1 shows the root mean square (RMS) error for
both reconstructions compared to the CAD model.

As we can see, both algorithms manage to recon-

1http://www.mpi-inf.mpg.de/resources/LineReconstruction/

83



Method min error max error RMS error
Jain et al. 0.000 0.019 0.0036
Ours 0.000 0.023 0.0013

Table 1. The comparison to the method by Jain et al. [10]
revealed that our method performs better in terms of the
RMS error but their method has a slightly lower maximal
error.

Figure 11. The top images show an example view from
the synthetic Timber-frame house sequence (240 images)
along with the ground truth CAD model. The middle im-
age is the reconstruction achieved by [10], the bottom im-
age is our reconstruction. The color reveals the errors
compared to the CAD model (from 0.01 to 1.00). Best
viewed digitally and in color.

struct the building in a qualitatively accurate way.
Our approach performs better in terms of the RMS
error, while Jain et al. are able to reconstruct a few
more lines, especially on the roof. Even though the
resulting models are similar, the computational time
differs highly. The authors report that their algorithm
often needs several hours to deliver the result, while
our method is able to reconstruct this sequence in
7.5 min using all 240 images and not only a subset
of 72 as [10].

5.3. Performance Evaluation

Since we have to evaluate many possible matches
for each 2D line segment (to avoid appearance-based
matching) our algorithm is more time consuming
than traditional line-matching approaches. Neverthe-
less, we manage to generate accurate results for the
general case in reasonable time. Table 2 shows a
performance evaluation for the three test sequences
presented in this paper. All experiments were per-
formed on a desktop PC equipped with an Intel Core2
4 × 2.66GHz processor. Note that for our own se-
quences (Pylon, House and Staircase) the image size
was significantly larger than for the Timber-frame
house, which explains the difference in speed.

6. Conclusion

We have presented a novel approach for the pur-
pose of generating 3D line models without explicit
appearance-based matching. The proposed algo-
rithm performs well for wiry structures as well as
solid objects. In contrast to a previous approach by
Jain et al. [10], we exploit epipolar constraints to
speed-up the computation while still creating accu-
rate results. We have shown that for scenes with few
keypoints located on the actual foreground object,
3D line segments can be used to densify the result-
ing model. This is of particular importance for urban
scenes and man-made structures which often provide
few distinctive feature points.

While our approach is able to generate 3D line
segments even when a 2D segment is not exactly re-
detected in any other view (due to the matching strat-
egy based on epipolar lines), it usually generates a
large set of outliers. These outliers have to be re-
moved in a computationally expensive grouping step,
which may take a lot of time depending on the num-
ber of hypotheses. Therefore, our future work will
be to formulate the matching procedure in a proba-
bilistic way to allow online hypotheses generation,
in order to further improve the performance.
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Abstract. This paper presents a novel method to lo-
calize and segment objects on close-range table-top
scenarios acquired with a depth sensor. The method
is based on a novel objectness measure that eval-
uates how likely a 3D region in space (defined by
an oriented 3D bounding box) could contain an ob-
ject. Within a parametrized volume of interest placed
above the table plane, a set of 3D bounding boxes
is generated that exhaustively covers the parameter
space. Efficiently evaluating — thanks to integral
volumes and parallel computing — the 3D objectness
at each sampled bounding box allows defining a set
of regions in space with high probability of contain-
ing an object. Bounding boxes characterized by high
objectness are then processed by means of a global
optimization stage aimed at discarding inconsistent
object hypotheses with respect to the scene. We eval-
uate the effectiveness of the method for the task of
scene segmentation.

1. Introduction and related work

Accurate robotic perception is a fundamental fea-
ture for most envisioned application scenarios related
to service and industrial robotics. The capability of
segmenting a scene perceived by a sensor onboard
a robotic agent into a set of coherent patterns (or
objects) is a classical - though challenging - step
standing at the grounds of numerous tasks related
to robotic perception such as 3D object recognition,
point cloud registration, object grasping and manipu-
lation. As commonly deployed onboard most robotic
architectures, we assume the presence of a 3D per-
ception system, acquiring RGB-D data (a color frame
plus an associated organized point cloud), as well as
that of a dominant plane in the scene, which can be

represented by either the ground floor or a table on
which objects are lying. The assumption of a dom-
inant plane has been extensively used in the field of
robotic perception to speed up segmentation such as
in [6, 1, 2]. Other 3D segmentation methods without
the dominant plane assumption are those presented in
[8, 9]; even though they are more general than those
constrained by the dominant plane assumption, they
are characterized by a higher computational com-
plexity.

Under these conditions, we have devised a novel
algorithm aimed at automated localization of salient
volumes from the data related to the scene currently
in front of the robot. Our definition of saliency is
driven by the concept of objectness, i.e. a portion
of volume of the analyzed 3D space is salient if the
characteristics of the surface therein enclosed have a
high probability of representing an object, and vicev-
ersa. To this aim, the first contribution of this work
is the definition of an objectness measure for 3D data
which can be computed on a 3D bounding box of
generic dimensions, inspired from the work of Alexe
et al. [4], who proposed an analogous measure for
images. Based on our definition of objectness, we
then propose an effective optimization framework to
simultaneously detect the presence of several salient
bounding boxes in a 3D scene, which is able to dis-
card unrealistic object hypotheses such as objects in-
tersecting one another or bounding boxes that do not
fit tightly the object surface. Although our method
is not explicitly aimed at segmentation, in order to
provide a quantitative and qualitative experimental
analysis, we compare the results of our approach
with those of state-of-the-art segmentation methods
for point clouds, demonstrating the effectiveness of
our proposal. We expect our method to prove use-
ful as a pre-processing step of 3D object recognition
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Figure 1: Typical results obtained by the proposed
method. The green bounding boxes show the regions
selected by the method that are likely to contain an
object. The green sphere depicts the center of the
bounding box.

algorithms, in order to reduce the number of false
positives and improve the efficiency of current pro-
posals relying on matching global - as well as local -
3D descriptors [10, 1, 2, 3, 11].

1.1. Objectness for images

Alexe et al. presented in [4] an objectness mea-
sure for color images in an attempt to evaluate the
presence of an object without any specific object
class knowledge. They presented several image cues
aimed at capturing the closed boundaries of objects,
saliency as well as color contrast that are finally com-
bined into a single objectness measure, to be com-
puted on a (2D) rectangular bounding box. The ob-
jectness measure is evaluated at different randomly
sampled locations and proved to be useful in speed-
ing up specific object class detectors.

In our case, the availability of 3D information pro-
vides powerful cues to reason about objects directly
on the same 3D domain where the actual objects re-
side. This allows computing tight volumes enclos-
ing the objects as well as the ability to reason about
free and occupied space. Additionally, normals com-
puted on the surface of the objects provide a power-
ful cue to assess surface continuity and smoothness.
Throughout the work, we will show how this addi-
tional tools prove useful to evaluate the presence of
an object within a closed region in 3D space.

2. Notation and preliminaries

For a scene of interest, letM represent the depth
map acquired from the RGB-D sensor and S, in sen-

sor coordinates, the 3D point cloud, as seen from a
certain viewpoint ~vp, reconstructed from M. We
assume that S contains a dominant planar surface
P = {~n, d}, ~n being the normal to the plane, d being
the distance to the global reference frame, on which
objects lie upon. Using P , we apply a rotation and
translation to the global reference frame of S so that
its z-axis is aligned with ~n and its origin is on the
plane (d = 0). We are now able to compute the Vol-
ume of Interest (VoI), a region in the 3D space con-
taining all objects of interest, by checking the max-
imum extensions of the points above the table. The
VoI defines as well the region where the bounding
boxes will be sampled and the objectness measure
evaluated.

2.1. Complexity of the parameter space

Differently from [4], in a 3D domain each bound-
ing box b is characterized by 9 degrees of freedom:
b = b(x, y, z, sx, sy, sz, rx, ry, rz), where (x, y, z)
represents the reference corner of a bounding box,
(sx, sy, sz) its extension along the positive direction
of the 3 axes and (rx, ry, rz) its orientation. To
reduce the complexity of the parameter space, we
model only rz (rotations about ~n), assuming rx =
ry = 0, this being motivated by the fact that most ob-
jects lying on a table are well contained by a bound-
ing box with one plane parallel to the dominant pla-
nar surface P . Additionally, since objects lie on P , it
is possible to set z = 0, this resulting in 6 dimensions
to be sampled and yielding b = b(x, y, sx, sy, sz, rz)
(the dependency of b from its independent variables
will be dropped hereinafter for conciseness of nota-
tion).

Even after reducing the complexity of the prob-
lem, the number of bounding boxes that need to be
evaluated remains high. However, thanks to Inte-
gral Volumes (IV) [5] it is possible to evaluate in
constant time sums of elements (points, edges, etc.)
contained in the volume of space within (x, y, z) and
(x + sx, y + sy, z + sz). To model rz , it is possible
to rotate S at different angles (0◦ ≤ rz < 90◦) and
compute additional IVs for each rz . Modeling rz al-
lows to obtain bounding boxes that enclose the object
tightly. Next section discusses the different IVs that
need to be computed to represent the cues required
for the 3D objectness measure. Where not differently
stated, the IVs are computed at a resolution of 1 cm.
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2.2. Sampling bounding boxes

To cover the VoI, we perform an exhaustive sam-
pling of the parameter space generating a bounding
box b at each possible location. Corners defined by
triplets (x,y,z = 0) are sampled every 2 cm along x
and y directions; the bounding box extension defined
by triplets (sx, sy, sz) are sampled respectively every
(2,2,1) cm; finally, rz - the rotation angle about z -
is sampled every 5◦. We include a prior on the min-
imum and maximum size of objects, thus restricting
sx, sy, sz to be within the range [3; 45]cm. Such pa-
rameterization typically results in about 600 million
bounding boxes to be evaluated for each scene ac-
quired by the sensor. Thanks to the IVs and the paral-
lel computing capabilities of GPU devices, it is pos-
sible to evaluate such amount of bounding boxes in
a reasonable amount of time (approximately 3s on a
GTX460M device with a straightforward implemen-
tation).

2.3. Occlusion and occupancy volumes

Previous to the definition of the 3D objectness
measure, we need to introduce the concepts of oc-
clusion volume and occupancy volumes. These are
binary volumetric representations with an extension
equal to that of the VoI and will allow us, later on, to
derive important cues such as the free space inside a
bounding box.

The occupancy volume – V , is simply a binary
representation of Sp where a voxel takes the value
of 1 when at least a point p ∈ Sp falls inside the
voxel boundaries, 0 otherwise. The occlusion vol-
ume – VO, is likewise a binary set of voxels encod-
ing whether a voxel is visible from the viewpoint ~vp
or not, respectively taking values 0 and 1. To build
VO we make use of the depth map M and the VoI
previously computed. Concretely, we build a dense
point cloud CO spanning the VoI with a resolution of
1cm. Afterwards, we backproject each point pi ∈ CO
toM using the calibration parameters of the sensor
and reject all pi with a depth value lower than the cor-
responding depth value inM. The last step removes
all visible points in CO and allows us to generate VO
by simply checking if the voxel is empty or not. The
middle part of Figure 2 shows an occlusion volume
for a specific scene.

3. 3D Objectness

This section presents the cues as well as how they
are combined together to define the 3D objectness

measure. Similar to [4], the goal behind such cues is
to capture the closed boundaries of objects in order to
obtain high values for bounding boxes that contain an
object entirely and that enclose it tightly.

3.1. Edge density

The first cue under consideration regards edges.
Differently from [4], by reasoning in the 3D space
it is possible to define a much richer set of edges
than on the image plane. Specifically, we have de-
ployed an edge extraction algorithm, available on the
Point Cloud Library (PCL) 1, which is able to ex-
tract and discriminate between edges derived by sur-
face curvature variations (blue), edges causing occlu-
sions (orange), edges caused by occlusions (green)
as well as scene border edges (red); reported colors
refer to the left image of Figure 2, where a sample
scene is depicted together with the extracted edges.
The whole set of edges associated to a bounding box
b will be referred to as ε(b).

A nice property of such edges is that they are
usually found on the surface of the objects of inter-
est. Therefore, when a bounding box encloses a high
number of edges compared to the area of its visible
faces, this intuitively represents a strong cue for the
presence of an object inside it. Observe that from
a certain viewpoint, there will be always at most 3
faces of a bounding box that are visible. We thus de-
fine the edge density cue δi for a bounding box b as
follows:

δi(b) =
|ε(b)|
a(b)

(1)

where | · | is the cardinality operator and a(b) is the
visible area of b.

3.2. Outer edges

A second cue derived as well from edges is aimed
at penalizing bounding boxes that contain edges in
their immediate surroundings. The neighborhood of
a bounding box b is defined by a bigger bounding
box bε = b(x, y, sx + sx,ε, sy + sy,ε, sz + sz,ε, rz)
(we set sx,ε = sy,ε = 2cm and sz,ε = 4cm). This
cue is represented by the ratio between the number
of edges inside b, and the number of edges inside the
expanded bounding box bε:

δo(b) =
|ε(b)|
|ε(bε)|

(2)

1www.pointclouds.org/blog/gsoc12/cchoi/
index.php
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Figure 2: From left to right: different types of edges computed on the point cloud, occlusion volume and
smooth superpixels. Within the smooth superpixels image, points sharing the same color indicates belonging
to the same superpixel. Points with high curvature (in red) are ignored during the oversegmentation stage and
do not get assigned to any superpixel.

It is worth noting that this term is close to 1 when
the surroundings do not contain edges and decreases
linearly to 0 otherwise.

3.3. Smooth superpixels straddling

A third cue on which our objectness term re-
lies aims at penalizing bounding boxes that intersect
smooth surface segments (superpixels), as this is usu-
ally the indication that the bounding box does not
contain entirely one object. Indeed, since one com-
mon assumption is that superpixels do not to strad-
dle different objects, bounding boxes not containing
a complete superpixel are penalized accordingly. The
smooth segments are obtained performing an over-
segmentation of S based on point proximity and sur-
face curvature smoothness. The right part of Figure
2 shows the results of such over-segmentation stage.
Observe how non smooth regions are all assigned the
same label 0 (depicted in red).

Let |p(b)| be the number of points inside a bound-
ing box b with a superpixel label different than 0,
|p(s)| the number of points in S assigned to a super-
pixel s and |p(b∩ s)| the number of points belonging
to s and within b; the third cue δl(b, s) relative to a
single superpixel s is then defined as follows:

δl(b, s) =
|p(b ∩ s)|2
|p(s)| (3)

The final term δl(b) relative to a bounding box b and
all its enclosed superpixels can then be obtained as
follows:

δl(b) =

∑

s∈Ω

δl(b, s)

|p(b)|
(4)

where Ω is the set of superpixels extracted from S.

3.4. Free space

A final cue taken under consideration regards the
free space within a bounding box aim at favoring
bounding boxes that tightly enclose the object of in-
terest. Let |pVO(b)| be the number of occluded vox-
els inside a bounding box b computed by means of
the occluded volume VO, and let V (b) be the volume
of b; the free space cue is then defined as follows:

δf (b) =
V (b)− |p(b)| − |pVO(b)|

a(b)
(5)

3.5. 3D Objectness measure

Given the aforementioned cues, we can thus de-
fine the objectness measure for a bounding box b by
weighted sum of the previously introduced cues:

δ(b) = wi · δi(b) + wo · δo(b) · δl(b) + wf · δf (b)
(6)

As it can be seen, eq. 6 includes also a feature com-
bination aimed at dimensionality reduction of the
weights (δo(b) being multiplied by δl(b)), this being
motivated empirically. Instead of a heuristic measure
like the one in eq. 6, a learning approach for the dif-
ferent weights and combination of cues is desired.
We leave a more grounded approach outside of the
scope of the paper and will address it in future work.

4. Point cloud segmentation

This section details how the objectness measure
presented in the previous section can be successfully
applied for the task of point cloud segmentation. We
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Figure 3: Left: Remaining bounding boxes after the
post-processing stage in SubSection 4.1. Right: the
final bounding box selected by the method presented
in Section 4.2 that simultaneously considers the in-
teraction between all hypotheses to find out a consis-
tent segmentation of the scene.

carry out this by means of three successive steps: (i)
we use the measure itself to filter out bounding boxes
below a certain object threshold (ii) the remaining
bounding boxes are clustered together based on the
amount of scene overlap within them, then for each
cluster only those with the highest objectness mea-
sure are kept, finally (iii) a global cost function is de-
fined over the scene aimed at determining a globally
consistent subset of bounding boxes that best seg-
ment the scene. The output of the algorithm is thus
represented by the set of bounding boxes surviving
these three steps or, equivalently, the scene segment
associated to each bounding box, where a segment
includes all pixels falling within a bounding box.

4.1. Filtering bounding boxes based on objectness

Consider B = {b1, · · · , bN} a set of bounding
boxes with an associated objectness score. As a
first step, bounding boxes are discarded by thresh-
olding the objectness score. Successively, we group
the remaining bounding boxes into a set of clusters
C = {c1, ..., cm}, where each cluster ci groups to-
gether bounding boxes based on the proximity of
their centers’ coordinates. Within each cluster ci we
analyze the first nb, sorted by their objectness score,
looking for conflicting bounding boxes. We say that
two bounding boxes bi, bj are in conflict if they share
at least 95% of scene points within them (with re-
spect to the bounding box with a higher amount of
points). We create a conflict graph within each clus-
ter and perform a non-maxima supression based on
the objectness measure to keep the best bounding box
among those in conflict. This process results in a new
set of bounding boxes B∗ = {b1, · · · , bn}, with usu-
ally n << N . The left part of Figure 3 shows the
bounding boxes after this stage while, on the right, it

depicts the finally selected bounding boxes by means
of the final post-processing stage, presented in the
next section.

4.2. Global hypotheses selection

Here we provide a framework for establishing the
most plausible configuration of salient objects in the
current scene under evaluation. The problem can be
formalized as follows. We start from a set of n ob-
ject hypotheses, B∗ = {b1, · · · , bn}, represented by
the bounding boxes that survived the filtering step de-
scribed in Section 4.1.

We adopt the framework (and notation) proposed
in [3] to optimize the problem of finding the best
configuration of plausible hypotheses simultaneously
present in S. Specifically, a cost function is defined
over the solution space defined by the set of boolean
variables X = {x0, · · · , xn} having the same car-
dinality as B∗, with each xi ∈ B = {0, 1} indicat-
ing whether the corresponding hypothesis hi ∈ B∗
is dismissed/validated (i.e. xi = 0/1). Hence, the
problem can be formulated as finding the best con-
figuration that minimizes a cost function expressed
as F (X ) : Bn → R, Bn being the solution space, of
cardinality 2n:

X̃ = argmin
X∈Bn

{ F (X )} (7)

where

F (X ) =
n∑

i=1

δf (bi) · xi + λ
∑

p∈S′
ωX (p) (8)

As it can be seen from (8), the cost function we aim
at minimizing is composed by two terms weighted
by a regularizing parameter λ. The left-hand term
aims at enforcing tight bounding boxes around the
objects, and thus penalizes the free space (through
term δf (bi)) of the currently activated bounding box
hypotheses within configuration X . As for the right-
hand term, it is a sum over all points of the scene
surface S ′: for each point, a weight ωX (p) is thereby
associated which enforces instead several cues penal-
izing invalid combinations of active bounding boxes
over p in the current configuration X . S ′ represents
the initial scene S downsampled to a lower resolu-
tion (for efficiency reasons) after removing points on
P or below it.

To define this weight, we first have to introduce a
new term, κ(p, b), which takes the value 1 when the
point p is within the bounding box b, 0 otherwise.
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On top of the definition of κ(p, b), we define a term
κ(p)X counting the number of bounding boxes acti-
vated within a specific configuration X that enclose
point p:

κX (p) =
n∑

i=1

κ(p, bi) · xi (9)

The weight ωX (p) can be thus defined as:

ωX (p) =





n∑

i=1

κ(p, bi) · xi, κX (p) > 1

−
n∑

i=1

κ(p, bi) · xi · δ(bi), κX (p) = 1

n∑

i=1

κ(p, bi,ε) · xi, κX (p) = 0

(10)
The three conditions included in (10) are relative

to three different cues being simultaneously enforced
by the proposed cost term. In the first condition (case
i), κX (p) > 1), point p introduces a penalty due
to the fact that it being enclosed by more than one
bounding box (multiple assignment). The penalty is
proportional to the number of bounding boxes en-
closing p. As for the second condition (case ii),
κX (p) = 1), the cost is being penalized by the ob-
jectness measure associated to the unique bounding
box that encloses p, as we aim at retaining hypothe-
ses characterized by high objectness. Finally, as for
the third condition (case iii), κX (p) = 0), if a point is
not enclosed by any bounding box, it adds a penalty
to all active hypotheses for which it falls in their
proximity. This final cue is computed by means of an
expanded bounding box bε as done in (2), and tends
to penalize a bounding box if it has points lying in
its surroundings that are not explained by any other
active hypotheses, this being usually a sign of a not
good enclosure of the object.

To find a minimum for the cost function F we
deploy Simulated Annealing[7], a typical meta-
heuristic algorithm used for finding approximated so-
lutions of non-linear pseudo-boolean programming
problems.

5. Experimental evaluation

In order to assess the performance of the 3D ob-
jectness measure as well as of the proposed segmen-
tation approach presented in Section 4, we have per-
formed an evaluation regarding segmentation accu-
racy on the publicly available Willow ICRA Chal-

lenge dataset 2 containing 434 object instances ly-
ing on a table. The dataset contains pixelwise an-
notated ground-truth segmentation and allows us to
evaluate over- and under-segmentation. It contains
typical household objects such as cereal boxes, food
cans, detergent bottles, books, etc. (see Figure 4-(d)).
Figure 1 show some scenes from the dataset.

We have compared the performance of our method
with the segmentation method based on [6]; a simple
but highly efficient two step strategy: (i) multi-plane
segmentation of the scene and (ii) connected compo-
nent clustering of points above any detected plane.
To efficiently compute planar regions in a scene, it
uses a connected components strategy where neigh-
boring pixels are considered to be in the same com-
ponent (planar region in this case) if the dot product
of their normals and the Euclidean distance between
the points are within a certain range. The planar re-
gions found are further analyzed in order to merge re-
gions that share the same planar model and were not
detected during the first stage due to the constrained
4-neighbor search. The second step performs sim-
ilarly to the first step, and groups points (without
taking into consideration the points belonging to the
detected planes) in the same component if their Eu-
clidean distance is smaller than τ . The resulting com-
ponents form the segmentation hypotheses. Such a
segmentation strategy assumes that the objects will
lie on a planar surface and that points belonging to
different objects lie farther than τ . Hereinafter, we
will refer to this method as MPS.

Additionally, we carried out an experiment to
evaluate solely the objectness measure. To do so, we
computed, on the same dataset, the Precision and Re-
call values for the bounding box with highest object-
ness score. In this case, we are interested in assessing
how often the bounding box with highest score com-
pletely contains a ground truth object without includ-
ing other objects or part of the background.

5.1. Results and discussion

Figure 4-(a) and -(b) compare respectively Pre-
cision and Recall results yielded by MPS and the
proposed method for the task of scene segmenta-
tion. Each point in the scatter plot represents one
scene in the dataset. The Precision and Recall val-
ues are computed for each scene by averaging the

2The whole dataset with annotated segmentation labels can
be downloaded from http://svn.pointclouds.org/
data/ICRA_willow_challenge_segmentation_
gt/
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Figure 4: Evaluation on the Willow ICRA Challenge dataset (Precision vs Recall per scene) (a) segmentation
results with MPS and (b) results with the proposed pipeline. (c) Precision and recall values for the bounding
box with highest objectness score. (d) 10 of the 35 objects in the dataset.

respective values relative to each ground-truth ob-
ject present in the scene. A low Precision value in-
dicates that the object was undersegmented, while
a low Recall indicates that the object was overseg-
mented. Observe how MPS presents undersegmenta-
tion on 4 scenes were objects are touching each other
as well as oversegmentation on several other scenes
caused by self-occlusions or missing data. Overall,
the proposed approach outperforms MPS, with an av-
erage Precision/Recall of 99.9% versus 99.1%. Due
to the dataset characteristics (scene objects often lie
far away from each other), MPS performs, on the
average, similarly to the proposed method. How-
ever, in some scenes where objects are quite close
to each other, MPS tends to yield to undersegmen-
tation (note the 4 sample points with Precision val-
ues lower than 0.8 in Figure 4-(a) indicating that two
or more objects were merged in the same cluster),
as well as minor oversegmentation artifacts (several
points with Recall values lower than 0.95). Observe
as well, on the left part of Figure 5, a scene where the
presented method correctly splits two objects touch-
ing each other; MPS would fail to properly segment
those objects due to their proximity ending up in a
single cluster.

Figure 4-(c) shows the Precision and Recall results

obtained by considering only the bounding box with
highest objectness score. We can observe how just
a single bounding box with high objectness resulted
in undersegmentation of one scene. On the other
hand, the best bounding box is relatively often pre-
senting oversegmentation, yielding Recall values be-
low 0.9. The scatter points with very low Recall val-
ues (< 10%) appear when the best bounding box en-
closes only background (in some scenes, the hand of
the person setting up the dataset is visible and within
the VoI but annotated as background).

By analyzing Figure 4-(b) and -(c) simultaneously
we can note that even on situations where the bound-
ing boxes with higher objectness were causing over-
segmentation (Recall values below 0.9), the segmen-
tation method in Section 4 was ultimately select-
ing other bounding boxes providing a more pleasant
and consistent configuration. The same applying for
the undersegmentation case, indicates that simulta-
neously analyzing nearby bounding boxes allows to
overcome some errors caused by individual local de-
cisions.

6. Conclusion and future work

We have presented several cues to be computed on
3D point clouds aimed at evaluating how likely it is
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Figure 5: Some qualitative results with the presented method. Observe on the rightmost image in the figure a
failure case where the cylinder is split into two separate bounding boxes. These scenes belong to the Object
Segmentation Database http://www.acin.tuwien.ac.at/?id=289.

for a closed region in 3D space to enclose completely
a single object. The cues have been combined in a
preliminar objectness measure formulation that has
shown great potential during the experiments. We
have also presented a framework for scene segmen-
tation based on the objectness measure as well as
other physical constraints being able to find a plau-
sible segmentation of table-top scenarios even under
challenging clutter situations, represented by objects
touching each other.

Based on the encouraging results obtained in this
initial work as well as the observed limitations of the
methods, there exist several directions that ought to
be explored in the future. As already pointed out in
Section 3.5, a more grounded approach for the com-
bination of cues needs to be investigated as well as
additional cues that might help solving even more
challenging scenes. Another direction of research
aims at reducing the computational complexity of the
method in order to be able to explore the additional
degrees of freedom that were ignored in the scope
of this work (especially, we would like to allow ob-
jects to be on top of each other, so as to remove
the table-top constraint). In this direction, we would
like to explore bottom-up strategies to infer promis-
ing subspaces where the objectness measure will be
evaluated. This strategy would allow to replace the
current exhaustive enumeration resulting in a much
lower complexity even when removing some or all
of the constraints currently used.
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Abstract. In interactive machine learning the pro-
cess of labeling training instances and introducing
them to the learner may be expensive in terms of hu-
man effort and time. In this paper we present dif-
ferent strategies for detecting gaps in the learner’s
knowledge and communicating these gaps to the
teacher. These strategies are considered from the
viewpoint of extrospective and introspective behavior
of the learner – this new perspective is also the main
contribution of our paper. The experimental results
indicate that the analyzed strategies are successful in
reducing the number of training instances required to
reach the needed recognition rate. Such a facilitation
may be an important step towards the broader use of
interactive autonomous systems.

1. Introduction

Cognitive systems are often characterised by their
ability to learn, interact with the environment, and act
autonomously. They are able to respond to requests
of human users and other cognitive agents, and are
also capable of taking the initiative and engaging in a
dialogue with a human. Very importantly, they are
able to learn from such interactions; they are able
to acquire novel knowledge and update previously
learned conceptual models in an incremental manner.
They can passively receive the information they need
in this incremental learning process. In this case they
simply rely on the environment, or on a human tutor,
for being provided with appropriate information for
efficient learning. However, they can also take an ac-
tive part in this incremental learning process and try
to infer what kind of information is needed to make
the learning more efficient. The latter learning ap-
proach is known as active learning.

Active learning requires that the system identifies
learning opportunities. This in turn requires that it

must be able to detect gaps in its knowledge, which
may indicate good learning opportunities. Typi-
cally the knowledge gaps are detected in a particu-
lar modality; they are usually grounded in a partic-
ular representations. Subsequently, the knowledge
gaps have to be, in some general form, communi-
cated to the rest of the system and to other agents
that can plan and execute actions necessary to fill
these gaps. After the system obtains the required
information, it can extend its current knowledge ac-
cordingly. A crucial requirement of a system that is
supposed to self-extend is therefore a certain level
of self-understanding that enables the detection and
communication of gaps in its knowledge.

In our work we focus on this problem. We ad-
dress the problem of knowledge gap detection in the
context of the active learning paradigm and address
specific active learning strategies from the viewpoint
of extrospective and introspective robotic behavior.
This new robotics-oriented view also represents the
main contribution of our paper. Since our research
has been concentrated around interactive continuous
learning of conceptual knowledge in dialogue with a
tutor, most of this paper has been written with this
learning scenario in mind. However, the proposed
solutions are general enough that they can be applied
to other learning domains as well.

Our final goal is to develop active learning strate-
gies which would successfully reduce the amount
of learning data needed to transfer the categorical
knowledge from the human teacher to the robotic
learner. These strategies should be used to construct
as autonomous and as domain-independent frame-
work for dialogue-based learning as possible.

The paper is organised as follows. In Section 2 we
first discuss the related work. In Section 3 we present
an approach to knowledge gap detection. In Sec-
tion 4 we then discuss different ways of knowledge
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gap communication and propose four active learn-
ing strategies based on them in Section 5. Then we
present the experimental results in Section 6 and con-
clude the paper with some final remarks in Section 7.

2. Related work

Active learning strategies proposed in the litera-
ture mainly address the problem of estimating clas-
sifiers using minimal amount of data. They are mo-
tivated by the fact that there are many situations in
which large quantities of unlabeled data are relatively
easily obtained, however, the cost of labeling each
instance can be high. Two extensive survey papers
on active learning literature are available providing a
broad overview of the field [11, 13]. Furthermore, a
survey has recently been published [7], studying and
comparing utility metrics and learning strategies for
selecting training instances in active learning.

In this work we focus our attention towards inter-
active learning of categorical knowledge in dialogue
with a teacher, similarly as the authors in [5]. For
such real-life situations, it is desirable that the learner
detects good candidates for querying on the fly and
updates its classifiers accordingly, while requiring
minimal involvement of the teacher. Also other au-
thors focus more on this social aspect of active learn-
ing. In [8] the authors present a learning strategy akin
to our LDieSel. They have similarly combined prin-
ciples from two active learning scenarios, query syn-
thesis and pool-based sampling. However, in their
case the motivation is in obtaining improved perfor-
mance by eliminating specific disadvantages of each
of the two scenarios, while in ours we essentially en-
able the communication between the robotic learner
and the human teacher.

In [1] four learning modes are described, which
distinguish in how frequently the learner communi-
cates with the teacher to obtain information, i.e. how
often the interaction takes place. Four passive learn-
ing strategies based on features of biological systems
are implemented in [2], where the strategies differ in
the way they update the informativeness of individ-
ual objects. In [3] active learning is discussed from
the viewpoint of transparency of the learner’s internal
states, and how these states may be used to inform
the teacher about the level of the learner’s knowl-
edge. The approach is implemented on a physical
robot with socially expressive head and neck, and
simple non-verbal gestures are employed to provide
the teacher with the transparent insight into the un-

derlying model uncertainties.
In [15] the difference between training instances

selected by a human teacher and systematically col-
lected training instances is investigated. Besides,
a method for the learner to convey the information
about its knowledge gap to the teacher is presented.
[1, 15, 3] include experiments with one or more hu-
man teachers, whereas in [2] robot-to-robot inter-
action is employed with the intention of providing a
controlled environment for systematically exploring
of how the learner is influenced by different teacher
behaviours.

The authors in [10] discuss an active learning
system from the viewpoint of combining interac-
tive social learning (with a human teacher) and au-
tonomous, non-interactive, intrinsically motivated
learning. On the other hand, a learning strategy
in [4], combines interactive autonomous selection
of training instances (in areas of the problem space
where the learner can classify with sufficient cer-
tainty) and non-interactive teacher-driven selection
(in not-well-explored areas). The underlying learn-
ing method is, similarly as our odKDE, based on
Gaussian mixture models (GMMs). A system with
the goal of autonomous exploration of new knowl-
edge is presented in [12] and discussed from the
viewpoint of intrinsic motivation systems for au-
tonomous development of robotic learners. The au-
thors are inspired by human development where in-
trinsic motivation plays an important role and which
may be characterized as progressive, incremental, ac-
tive and autonomous.

The learning strategies that we address in our work
are related to several approaches presented in the
above-mentioned papers. We have built on our work
in [14] and further developed certain learning strate-
gies. Additionally, the meta-learning framework has
been generalized to work on high-dimensional data
(i.e. comprising tens of attributes) and tested with
two learning methods.

3. Knowledge gap detection

In the active learning cycle there are two very im-
portant tasks that the system has to complete in or-
der to get novel information that would help it to
improve its knowledge in an efficient way: detec-
tion (Section 3) and communication (Section 4) of
knowledge gaps. It should be noted that in the active
learning community the process of “knowledge gap
detection” is recognized under the term “selection of
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informative training instances”.

3.1. Extrospection and introspection

The crucial step in an active learning cycle is the
detection of ignorance. The system should first self-
understand – it should understand what it does and
what it does not know. By using its internal modal
representations it should detect what information is
missing. Generally, the knowledge gap detection can
be tackled in two different ways; it can either be re-
lated to a particular situation or not. We therefore
may distinguish between two types of knowledge gap
detection: extrospective and introspective.

In the case of extrospective knowledge gap de-
tection, this process is related to a particular situa-
tion, i.e., to a particular object in a scene or to some
other training instances the learner can perceive. The
learner tries to detect the lack of knowledge by ob-
serving and trying to recognize a number of existing
objects that it might or it might not know. This is
a typical pool-based active learning approach – the
learner is given a number of unlabeled objects, and
it has to select one (or several) of them for labeling.
Ideally, it would select the instance that would help to
improve its knowledge most (by providing instance’s
real label).

Another way of detecting knowledge gaps is
through introspection. In this case the detection of
knowledge gaps is completely self-driven and is not
related to any particular situation or task. It is not
triggered by any external problem; it is triggered by
an inner motivational mechanism with the goal of de-
tecting ignorance and proposing actions that would
provide the information needed to extend the current
knowledge. No sensorial inputs are used in this case;
the detection of knowledge gaps is based solely on
the current knowledge. Since there are no real in-
stances the learner could estimate its knowledge on,
the robot could try to hallucinate sensorial inputs (ba-
sically, sample over distributions of feature values it
uses) and attempt to interpret these hallucinated situ-
ations. Failing to do that would indicate a knowledge
gap. This type of knowledge gap detection is thus
also based on the output of the classifier, which is
built on the top of the models; the only difference is
that the input is hallucinated and not perceived.

3.2. Measuring uncertainty

In knowledge gap detection the crucial task is to
measure how good the knowledge is, i.e., how certain

or uncertain is the classification of particular obser-
vation or hallucination. In the case of extrospective
knowledge gap detection the learner tries to estimate
the certainty of recognition of all available data. Sim-
ilarly, in the case of introspective knowledge gap de-
tection the learner tries to estimate the certainty of
hallucinated instances. In both cases, it has then to
select the deepest gap in its knowledge based on the
estimated certainties.

Several certainty measures can be employed.
As mentioned above, our knowledge gap detection
mechanism requires that the underlying learning and
recognition methods provide posterior probability
over all categories, therefore the responses p(Mi|z)
of all k modelsMi for every given observation z. Our
method for calculating the certainty by analysing the
posteriors is presented below.

First, we determine two models with the highest
response:

Mmaxap = argmax
Mi

{p(Mi|z)} (1)

Mmaxap2 = argmax
Mi,Mi 6=Mmaxap

{p(Mi|z)} (2)

Based on these responses we are able to look for
two types of knowledge gaps. A low response of the
best model Mmaxap indicates that the particular re-
gion of the feature space is not well modeled. In
this case the measure for certainty could be expressed
simply as

C(z) = p(Mmaxap|z) . (3)

However, even if the response of the best model is not
low, but is on the other hand similar to the response
of the second best model, we can consider the partic-
ular region in the feature space as a knowledge gap.
The reason for such a conclusion is that the models
are ambiguous, and can not provide reliable classifi-
cation. In this case we can express the certainty as

C(z) = p(Mmaxap|z)/p(Mmaxap2|z) , (4)

which is very similar measure to the margin sam-
pling, known from the active learning literature. In
this literature, also the third certainty measure in un-
certainty sampling is often used, which is based on
the entropy:

C(z) =
k∑

i=1

p(Mi|z) log(Mi|z) . (5)
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Once the certainties of all samples are estimated, the
deepest knowledge gap can be found by looking for
the most uncertain sample:

z∗ = argmin
z
{C(z)} . (6)

In this paper we do not commit to specific under-
lying learning methods that are actually used to train
classifiers using training instances; we rather focus
on a higher layer of the proposed learning frame-
work. We try to be as agnostic with respect to the un-
derlying learning method as possible. Any incremen-
tal learning method and the classifier that can return
posterior probability over all possible classes can, in
principle, be used.

3.3. Directed uncertainty sampling

In the case of introspective knowledge gap detec-
tion the learner has to sample the feature space to
produce the hallucinated instances. This sampling
cannot be random, especially in the case of high-
dimensional feature spaces; it should be driven by the
structure of the current knowledge and by the output
of previous classifications.

We have designed the following Monte Carlo–like
method to deal with possible high-dimensional fea-
ture spaces. In our method the learner executes the
following four steps.

1. Take M random samples from the feature-
space. These are the first collected samples.

2. Calculate the depth of knowledge gap for all
collected samples (as described in Section 3.2).

3. Choose M samples from the set of collected
samples; tend to choose samples with deep
knowledge gaps. Around each of M samples
take a new Gaussian sample from the feature
space, calculate the depth of knowledge gap for
the sample and add it to the set of collected sam-
ples.

4. Repeat the previous step N times or until con-
vergence.

This simple algorithm does not guarantee to find
the optimal solution, i.e., the global certainty mini-
mum. But in this task finding the optimal solution
is not really necessary; what we actually want is a
good enough solution, which is always provided by
the algorithm. In fact, this algorithm very often finds
knowledge gaps that are very close to the optimal
ones.

4. Knowledge gap communication

The second problem we address in this paper is the
one of knowledge gap communication. How can the
learner communicate the knowledge gap? How can
it notify others (e.g., the teacher) about what kind of
information is needed? Also in this case we can dis-
tinguish between the extrospective and the introspec-
tive case.

In extrospective knowledge gap communication,
the learner refers to existing training instances. It
therefore selects one of the available training in-
stances from the pool of instances, or it labels a gen-
erated instance based on the label of one of the exist-
ing instances.

In the case of extrospective knowledge gap de-
tection such extrospective communication of the de-
tected gap is straightforward, since the gap is located
in one of the instances that actually exist.

In the case of introspection, however, it is more
difficult to communicate this gap, since the detection
is not based on a particular situation the robot could
refer to. If the learner is able of inverse mapping from
the feature values to the action parameters (as op-
posed to the mapping from action parameters to fea-
ture values, which is a part of the regular feature ex-
traction process), then we say that the knowledge gap
communication is also introspective. These kinds of
learning scenarios can take full advantage of intro-
spective knowledge gap detection, which may lead
to a very efficient selection of training instances. If
this is not possible, the learner can communicate the
knowledge gap by referring to instances which he has
access to (from the pool of training instances). In this
case, therefore, the knowledge gap communication is
extrospective.

5. Active learning strategies

Based on the way the knowledge gap is detected
and on the means of how the request for information
is communicated to the teacher, we distinguish four
different active learning strategies (as also listed in
Table 1):

• LDeeSel (extrospective-extrospective instance
selection). The learner has access to a pool
of non-labeled training instances. The learner
measures potential knowledge gaps for feature
vectors of introduced instances. Subsequently,
the learner asks the teacher for the label of one
of the not yet chosen instances for which the
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deepest knowledge gaps have been detected. In
this variant the learner operates on the pool of
training instances and does not sample the fea-
ture space for detecting possible more signifi-
cant knowledge gaps.
• LDieSel (introspective-extrospective instance

selection). The learner samples the feature
space and tries to detect gaps in its knowledge
independently of the teacher. When found, the
learner looks for the most similar training in-
stance from the pool of the instances and com-
municates it as a knowledge gap. This strategy
should be used when the learner can not com-
municate the detected feature gap directly (i.e.
it can not map the feature values into the input
space).
• LDieGen (introspective-extrospective instance

generation). The knowledge gap detection is
performed in a similar way as in the previous
case. However, the label of the feature repre-
senting the detected knowledge gap is then ob-
tained by checking the label of the most sim-
ilar training instance in the pool of instances.
Note that in this case the new training instance
consists of the feature vector of the knowledge
gap and the label of the most similar instance.
The advantage of this approach in comparison
to LDieSel strategy is that it tends to choose the
most informative training instances for learning
and not just some approximation from the exist-
ing pool. The weakness of this strategy, how-
ever, is a risk that the nearest training instance
does not necessarily belong to the same class as
the new instance (i.e. the assigned label may be
incorrect).
• LDiiGen (introspective-introspective instance

generation). This is the ultimate strategy. When
this one is possible, the learner introspectively
communicates the knowledge gap to the teacher
and asks for the label. The teacher replies with
the class label of this exact, newly generated
training instance. Obviously, in this case an in-
verse mapping from the feature space to the in-
put space should be possible.

The principles of LDeeSel, LDieSel, and LDiiGen
learning strategies are well known in the field of ac-
tive learning. However, to the best of our knowledge,
LDieGen provides a novel approach for choosing in-
formative training instances, at least from the per-
spective of human-robot interaction.

Table 1. Four different active learning strategies.
strategy detection communication
LDeeSel extrospective extrospective
LDieSel introspective extrospective
LDieGen introspective extrospective
LDiiGen introspective introspective

When using the above presented active learning
strategies, models built by the underlying learning
method are not reliable at the beginning of the learn-
ing process. Instead of leaning on unreliable knowl-
edge, a reasonable solution seems to be some level of
randomness, i.e. choosing a random training instance
with some probability.

6. Experimental results

In this section we present the results of the evalu-
ation of different learning strategies, presented in the
previous section. The evaluation has been performed
on three data sets: spatial templates, colors, and the
UCI Letter recognition data set.

For the underlying learning method we used the
odKDE algorithm we have previously developed [9],
and in Sec. 6.3 also the mcpIncSVM based on [6].
Both methods are able of incremental learning by up-
dating the representations with one training instance
at a time. The corresponding classifiers conveniently
calculate posterior probability for all learned con-
cepts, therefore enabling simple detection of knowl-
edge gaps as described in Section 3.

At the beginning of the learning process we have
first trained the learning method with a small batch
of initial learning instances to initialise the models.
Afterwards we have continued to add one instance at
a time, according to different learning strategies. At
every step we have evaluated the quality of obtained
models by trying to classify all test instances. All
experiments have been repeated several times and the
results have been averaged across all runs.

We begin this section with the summary of some
teacher-driven learning strategies since they will be
used as a baseline in comparison with the proposed
active learning strategies.

6.1. Teacher-driven learning strategies

In the evaluation we used three strategies for
teacher-driven selection of training instances, similar
to those presented in [14]:

• TDseq. The simplest way of presenting the
learning instances is to present them in a se-
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quential order, one by one: first all of the in-
stances from the first class, then all of the in-
stances from the second and so on. In such a
setting, the learner passively receives training
instances.
• TDrnd. The teacher is showing not yet chosen

training instances to the learner in a random or-
der. The learner, again, passively accepts of-
fered training instances.
• TDfdb. In this strategy the feedback from

the learner is taken into account. The teacher
shows a number of exam instances to the learner
and then provides as a training instance one
of the instances that was not recognised cor-
rectly. Clearly such a strategy requires more ef-
fort from the teacher and the learner, however, it
should lead to better results and more efficient
learning in terms of the number of knowledge
updates. However, all exam instances also have
to be labeled. The labels are not required by the
learner but are needed by the teacher himself,
therefore in this strategy the number of labeled
training instances required could be high.

6.2. Learning spatial templates

Initially we have tested performance of the studied
strategies on the data set of spatial templates which
had been described in detail in [14]. This set con-
tains 2 attributes and 3 classes and is the only data
set of the three in our paper which allows us to com-
pare all seven strategies. The other two (as also the
vast majority of real-life domains) do not provide us
with possibility of mapping from (low-dimensional)
feature space to (high-dimensional) space of learning
instances, and the use of fully introspective LDgen
is not possible there. Fig. 1 contains averaged re-
sults of the experiment on 121 training instances with
the odKDE learner over 100 runs. The training im-
ages were presented to the learning framework one
by one, as selected by different learning strategies.
As we may observe, all four variants of the learner-
driven active strategies achieve superior recognition
rate in comparison to teacher-driven strategies. LDi-
iGen strategy demonstrates the best behavior rising
to 99% recognition rate after only 40 training in-
stances. While LDieGen progresses quite fast in the
beginning it is the only strategy which does not reach
perfect classification performance at the end of learn-
ing. The reason is in incorrect labeling of some train-
ing instances, due to the risk mentioned in Sec. 5.

One thing to note is also a very good performance
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Figure 1. Recognition rate with respect to the number of
training instances on the data set of spatial templates.

of the TDfdb strategy in terms of the number of in-
stances used for updating the model (the solid green
curve). However, the number of images that had to be
labelled, in order to be presented as exam instances,
was significantly higher (the dashed green TDfdbL
curve).

6.3. Learning colors

We have made further evaluation on the color data
set from [14]. The set consists of 1094 images of 129
objects. We have used 820 images (75%) as train-
ing instances and 274 images (25%) for testing the
recognition performance. Eight colours were being
taught, based on the H, S, and L features from HSL
values of the dominant colour. In each run the set of
images has been randomly split into training and test
sets. We evaluated the strategies using two underly-
ing learning algorithms, odKDE and mcpIncSVM1.
The mcpIncSVM was set to have linear kernel.

The experimental results are presented in Fig. 2
and show the evolution of the recognition rate with
respect to the number of training instances. The re-
sults have been averaged over 100 runs. In our sce-
nario not only the final recognition rate is important
but also when certain recognition rate is reached. Al-
though the difference between strategies is not sig-
nificant in view of the final recognition rate, the ad-
vantage of our strategies is that they achieve cer-
tain recognition rate (much) earlier than random
(blind) strategies. Fig.3 depicts the number of train-
ing instances required to achieve a certain level of
recognition rate for all six strategies. This level has
been set to 99% of the final result of the baseline

1The source code is available at http://www-
ti.informatik.uni-tuebingen.de/ spueler/mcpIncSVM/.
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Figure 2. Recognition rate in the domain of learning qualitative descriptions of object colours.
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Figure 3. Number of training instances needed to achieve
the same recognition rate in the case of learning colors.

TDrnd method. For the TDfdb strategy both results
are shown; how many training instances have been
used for updating the knowledge, as well as how
many training instances have been labeled (when
showing the exam instances). The figure shows that
the LDeeSel and LDieSel active learning strategies
clearly outperform the teacher-driven strategies.

In addition to these experiments, we have also ver-
ified the influence of the number of exam instances
(Nexams) on performance of the TDfdb strategy. This
number determines how many learning instances are
used for intermediate evaluations of the learner’s
knowledge. When Nexams equals 1, TDfdb strategy
operates identical to random sampling. As the value
of Nexams increases, the probability that at least one
instance will be incorrectly classified – meaning that
we will be able to take such an instance as a new
training instance – also grows. The results are shown
in Fig. 4. The experiments have been carried out
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Figure 4. Recognition rate for different number of exam
instances: 1, 2, 5, 10, and 50

with the odKDE learning method on the color data
set with 820 training instances. Introducing more
exam instances to the learner obviously speeds up the
learning process. However, it has to be noted that for
TDfdb to achieve certain recognition rate there have
to be (considerably) more labeled instances available
as not only training instances but also exam instances
have to be labeled (denoted as the dashed curves in
Fig. 4). This experiment nicely demonstrates that by
an optimal selection of the training instances one can
speeds up the learning process enormously.

6.4. Experiment on the UCI Letter database

We have evaluated the strategies also on a consid-
erably more extensive data set – UCI Letter recog-
nition. This set is a high-dimensional data set with
16 attributes and 26 classes, where the data may not
be fully visualized. There are 16000 training and
4000 test instances available in separate sets. In Fig.
5 results of testing the strategies on the UCI Letter
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Figure 5. Recognition rate in the alphabet letters domain.

recognition data set using the odKDE learner are pre-
sented. The results have been averaged over 15 runs.
It is important to notice that the results are analogue
to the results on lower-dimensional color data set.
These results, therefore, also confirm superior per-
formance of the active learning strategies.

7. Conclusion

In this paper we addressed the problem of acquir-
ing categorical knowledge from the active learning
perspective. We focused on the problems of knowl-
edge gap detection and communication. For both of
these problems we proposed introspective and extro-
spective solutions, and based on these solutions, we
presented four variants of active learning strategies.

The experimental results show that the ana-
lyzed active learning strategies effectively reduce the
amount of training data that have to be introduced
to the learner when reaching the required recognition
rate. The results also demonstrate that the concerns
about incorrect labelings in the proposed LDieGen
strategy have came true. Further thorough test will
be conducted on different domains, however, for the
time being, this strategy can not be successfully em-
ployed to the problem of knowledge gap detection
and communication.
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Abstract.
Real-time 3D pose estimation from monocular im-

age sequences is a challenging research topic. Al-
though current methods are able to recover 3D pose,
they require a high computational cost to process
high-resolution images in a video sequence at high
frame-rates. To address that problem, we introduce
the new concept of check-points. They are the mini-
mum number of points needed to detect a 3D object
motion. Our method tracks the 2D projections of the
check-points over a 2D maximum pyramid. To han-
dle large displacements of the object, our approach
evaluates the projection of the check-points at high-
est levels of the pyramid. Moreover, it refines the
pose localization by utilizing the check-points at low-
est levels of the hierarchy. We show that just check-
ing a few cells per frame, our method estimates the
3D pose of the tracked object. This early version
of the method works with a specific type of object a
3D cube, with six well distinguished faces and which
salient features in all the faces are dots, a die.

1. Introduction

Tracking and pose estimation of an object in a
video sequence means continuously identifying all
six degrees of freedom that define the object position
and orientation relative to the camera. This is used
in robotic applications, augmented reality systems,
human computer interaction, automatic surveillance,
etc.
After more than thirty years of research, real-time
tracking for high-resolution images in an video se-
quence at high frame-rates is still a challenging re-
search topic.
Here we focus on model-based 3D tracking using a
single camera [11]. Model-based tracking methods
use the prior knowledge of the shape and the appear-
ance of the tracked object. The link between percep-

tion and the prior knowledge improves the robust-
ness and performance of the method. We can di-
vide the current tracking techniques into three main
categories: the marker-based techniques, the nat-
ural feature-based approaches and the tracking-by-
detection methods.
Tracking-by-detection methods identify and match
points in successive images, in a non-recursive way
[15], [1], [12]. These are strong methods. However,
they analyze the whole frame to detect the features,
which is computationally expensive.
The marker-based techniques and the natural feature-
based methods match individual features across im-
ages, in a recursive way, which means that they use
the last calculated position as an estimate for the cur-
rent position. The marker-based techniques use ei-
ther point fiducial or planar markers ([2], [8]). They
are fast, robust and accurate [11]. Their main draw-
back is the difficulty to introduce these marks in all
the environments.
The natural feature-based methods use the surface
properties present in the nature. The natural features
are either the edges (strong gradients or straight line
segments) [20], [5] or the information provided by
pixels inside the object (optical flow, template match-
ing or interest point correspondences) [7], [18].
Inspired by [13] we propose a top-down tracking
method. ”A top-down method incorporates the prior
knowledge about the objects in the lowlevel image
processing” [13]. In particular, our algorithm uses
the prior knowledge about the 3D shape in order to
find the check-points. The check-points are the mini-
mum set of 3D points around a salient feature, which
detects and estimates the changes in the object move-
ment (we assume a textured object with continuous
and smooth motion). Once we have the check-points
of the object, the tracking method requires a low
computational cost.
Furthermore, our algorithm is based on a pyrami-
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dal representation which allows large view changes.
The use of a hierarchical approach for tracking has
been widely used in the literature [4], [19], [9], [14].
Contrary to these methods, we implement a top-
down feature extraction instead of a bottom-up pro-
cess [10], which is less time consuming. Neverthe-
less, the main drawback of these approaches have
been the high computational cost to build a pyramid
per frame. To overcome this weakness, we can use
the increasing programmability and computational
power of the graphics processing unit (GPU) present
in modern graphics hardware. It provides great scope
for acceleration of computer vision algorithms which
can be parallelized [16].

The rest of the paper is organized as follows: Sec.2
describes the different structures and processes of
this approach. Sec. 3 presents the top-down 3D
tracking and pose estimation method. The experi-
mental results revealing the efficacy of the method
are shown in Section 4. Finally, the paper concludes
along with discussions and future work in Section 5.

2. Definitions

In this section we define the new concepts of
maximum pyramid and check-points. Moreover, we
describe in detail our recursive predictor-corrector
tracking algorithm.

2.1. Maximum pyramid

A regular pyramid is a hierarchy (Fig. 1). Each
level λ contains an array of cells. A cell of a reg-
ular pyramid is determined by its position (i, j, λ)
in the hierarchy, (i, j) are its coordinates within the
level λ. The cells on λ= Ø (base level) are either di-
rectly the pixels of the input image or the result of
any local computation, like filters, on the image. We
obtain each pyramid level recursively by processing
the level below.
The reduction window gives us the children-parent
relationships. Each cell in level λ +1 has a reduction
window of N×N children at level λ.
We can extend the parent-child relationship, defined
by the reduction window, until the base level. The
receptive field (RF) of a cell is the set of its linked
pixels on the base level. The RF defines the embed-
ding of a cell on the original image.
We use the reduction function to compute the value
of each parent from the set of values of its children.
The maximum pyramid uses the maximum as reduc-
tion function. Every cell stores the maximum gray

value of its receptive field. And all the gray values in
the receptive field of a cell are equal or smaller than
the gray value of this one. The top of the pyramid
receives the maximum gray value of the base image.
The ratio between the number of cells at level λ and
the number of cells at level λ+1 is the reduction fac-
tor (q).
The reduction factor and the reduction window
(N×N/q) define a regular pyramid [3].

Figure 1. Example of a 4×4/2 maximum pyramid

Let Dλ be a simply connected non-maximum re-
gion (pixels with higher gray values surround the re-
gion) at level λ of an one-dimensional N/2 pyramid.
Dλcan survive until the level λ + 1 if the receptive
field of at least one cell at this level is completely
inside of this region. We can construct Dλ+1 by
erosion (morphological operation) of Dλ. The ero-
sion applies a structuring element to Dλ. In this case
the structuring element is the reduction window (W=
|N |) (Erosion of Dλ by W is denoted Dλ 	 W ).
Furthermore, a sub-sampling reduces the number of
cells at λ+ 1 from λ by the reduction factor 2. Sub-
sampling with a factor of 2 corresponds to choosing
every second cell (Sub-sampling X by a factor q is
denoted X ↓ q):

Dλ+1 = (Dλ 	W ) ↓ 2 (1)

Using (1) and replacing all the factors by their
sizes (dλ is the size of Dλ):

dλ+1 =
dλ −N + 1

2
(2)

Theorem 1 (1D non-maximum region) Let Dλ be
a simply connected non-maximum region at level λ of
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an one-dimensional N/2 maximum pyramid. The size
(dλ) of Dλ, is exponentially decreasing by the reduc-
tion factor 2 as the level λ grows to higher pyramid
levels:

dλ =
d0 + (N − 1)

2λ
− (N − 1) (3)

Proof: We prove the theorem by induction. The size
of the non-maximum region at the base level is cor-
rect: d0 = d0+(N−1)

20
− (N − 1) = d0. We assume

that (3) is true for λ = α. Using the recursion (2) we
derive the formula for λ+ 1:

dλ+1 =
dλ −N + 1

2
(4)

=
(d0+(N−1)

2λ
− (N − 1))−N + 1

2
(5)

=
d0 + (N − 1)

2λ+1
− N − 1 +N − 1

2
(6)

=
d0 + (N − 1)

2λ+1
− (N − 1) (7)

�
In a similar way, letBλ be a connected maximum-

region (pixels with lower gray values surround the
region) at level λ of a N/2 pyramid. Bλ can survive
until the level λ+1 if the receptive field of one cell at
this level has at least one child inside of this region.
We can construct Bλ+1 by the dilation of Bλ. The
structuring element is the reduction window W. As
mentioned before, a sub-sampling reduces the num-
ber of cells at λ + 1 from λ by the reduction factor
2:

Bλ+1 = (Bλ ⊕W ) ↓ 2 (8)

Using (8) and replacing all the factors by their sizes
(bλ is the size of Bλ):

bλ+1 =
bλ +N − 1

2
(9)

Theorem 2 (1D maximum region) Let Bλ be a
connected bright region at level λ of an one-
dimensional N/2 maximum pyramid. The size (bλ)
of Bλ, is exponentially decreasing by the reduction
factor 2 as the level λ grows to higher pyramid lev-
els:

bλ =
b0 − (N − 1)

2λ
+ (N − 1) (10)

Proof: Proof. We proof the theorem by induction.
First, the size of the maximum-region at the base
level is correct: b0 = b0−(N−1)

20
+ (N − 1) = b0.

We assume that (10) is true for λ = α. Using the
recursion (9) we derive the formula for α+ 1:

bλ+1 =
bλ +N − 1

2
(11)

=
( b0−(N−1)

2λ
+ (N − 1)) +N − 1

2
(12)

=
b0 − (N − 1)

2λ+1
+
N − 1 +N − 1

2
(13)

=
b0 − (N − 1)

2λ+1
+ (N − 1) (14)

�
Fig. 2 illustrates the appearance of a bright region

(Theorem 2) at different levels of a 4/2 maximum
pyramid. When we have a maximum-region of size
bλ=6, bλ+1 will be either 5 or 4. bλ+1 depends on
the alignment of W in Bλ. If bλ is odd, bλ+1 does
not depend of the alignment of W in Bλ because
Bλ appears in the same number of reduction win-
dows independently of the alignment. When bλ=3,
bλ+1,+2,+3...=3. Furthermore, maxima-regions con-
verge to size 3 cells being smaller or larger than 3.

We can extend the results of the theorems above
to any dimension by the cross product. For in-
stance, considering a 4×4/2 maximum pyramid and
bλ=6×6, bλ+1 will be equal to 4×4, 4×5, 5×4 or
5×5.

Figure 2. Appearance of the maximum-region at different
levels of the 4/2 maximum pyramid. The direction and the
sense of the arrows indicate the evolution of Bλ to Bλ+1

2.2. Check-points

Check-points are the minimum set of 3D points
around a salient feature (the dots or the whole die),
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which detects and estimates the changes in the object
movement. We assume a textured object with con-
tinuous and smooth motion. We consider translation,
rotation and uniform scaling transformations.

Four points around of one dot detect any possible
translation and uniform scaling transformations.
And one point inside alerts us when we lose the
object (Fig. 3).

Figure 3. Check-points

However, we need at least two groups of check-
points to detect a rotation change with a circular
shape (Fig. 4).

Figure 4. Predicted check-points (x) and the correct posi-
tions of these check-points (*)

2.3. Prediction-Estimation-Correction

This section defines the Prediction-Estimation-
Correction method (PEC). We track the check-points
with a prediction-correction method. The procedure
is as follows. A motion model (the 3D affine mo-
tion model) predicts forward the check-points. We

project the predicted check-points positions into the
current frame. First, it checks whether a, b, d and
e are outside of the saliency and c is inside. Other-
wise, the prediction is incorrect. Tab. 1 considers
all the possible errors and estimates their correction
vectors. In the table, the zero means that the check-
point is outsize of the saliency and the one appears
when it is inside. The ”-” means that this check-point
does not have any effect on the calculated correction
vector. The direction and the sense of the arrows de-
scribe the correction vector. For instance, the case of
Fig. 5 corresponds to the box in Tab. 1, a, c, d are
equal to 1 while b and e are equal to 0. Therefore,
we translate the prediction to the left.

Figure 5. Translation error

Table 1

values at prediction
a b c d e v
0 0 − 0 1 ↘
0 0 − 1 0 ↙
0 0 − 1 1 ↓
0 1 − 0 0 ↗
0 1 − 0 1 →
0 1 − 1 1 ↘
1 0 − 0 0 ↖
1 0 − 1 0 ←
1 0 − 1 1 ↙
1 1 − 0 0 ↑
1 1 − 0 1 ↗
1 1 − 1 0 ↖
0 0 1 0 0 s
1 1 1 1 1 1/s

Finally, the correction step calculates the relation-
ship between the predicted and the estimated check-
points’s positions. This least-squares problem in the
3D space is solved by using Horn [6]. Horn re-
turns the uniform scale factor (s), the rotation matrix
(R3x3) and the translation vector (T3x1) needed to get
the correction (x) from the prediction (x’)( 15).

x = (s ·R3×3 + T3×1) · x′; (15)
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3. Top-down tracking and Pose Estimation
method

Our method tracks a die and estimates its 3D pose
in a monocular video sequence. This is a model-
based and top-down tracking method. We have a 3D
model of the tracked die, this model is just the coor-
dinates of its corners and the positions of its check-
points in each face. Moreover, our approach uses the
maximum pyramid to do a top-down feature extrac-
tion.
The method can be divided in three stages: The first
step is the localization of the die. The second stage
operates in the 2D space, it extracts the position. Fi-
nally, the third step operates in the 3D space, which
estimates the 3D pose (Fig. 6).
Target localization: We use Theorem 2 to find the
necessary height of the pyramid. If we know approx-
imately the size of the die in the current frame, we
can find the top-level where the whole die has a size
at most of 6 cells. At this level the whole die has ap-
proximately homogeneous color. The method selects
the cells where the object is placed. Hence the die is
localized.
Object position: We go top-down along the pyramid
until a level where the number of cells of the die is at
least 20 (we use Theorem 2 to find this level). In this
level, our approach estimates the position of the die
with the PEC method and one group of checkpoints.
Then we refine the position by going top-down in the
hierarchy until the dots appear on the level (obtain
this level with Theorem 3).
3D pose estimation: Finally, the method refines the
3D pose of the die by using two groups of check-
points and the PEC method.

Figure 6. Illustration of the Top-down tracking and 3D
pose estimation algorithm

4. Testing and results

All experiments are carried out with a 4×4/2 max-
imum pyramid.
Tab. 2 shows the experiments with two different im-
ages of a die: a die whose face area is 1600 pixels
(40×40 pixels) (Fig. 7) and a higher resolution im-
age with face area 96100 pixels (310 ×310 pixels).

λ0 λ1 λ2

λ3 λ4 λ5

Fig. 7. Maximum pyramid of a die (face area 40×40)

Tab. 2 shows the side length of the die (σ) and the
diameter of its dots (δ) at every level of the pyramid.
ε is the error between the theoretical (10), (3) and the
experimental results, εσλ=|σλ − bλ| and εδλ =|δλ −
dλ|. The biggest error is εσλ=0.69 pixels and εσλ=
1.37 pixels in the lower and in the higher resolution
image respectively.

Furthermore, the face size of the high resolution
die decreases from 96100 pixels (310×310 pixels) at
the base level to 24649 pixels (157×157 pixels) at the
level 1 which is a 74.35%. The reduction of the die’s
size allows to use smaller correction vectors which
accelerate the PEC method.
For the rest of our experiments we use a monocular
video sequence of a die. Figs. 8 and 9 have the same
nine frames (I1, I2..., I9) of the video sequence. They
show the prediction (green points) and the correction
(red-points) of the check-points’s positions at the lev-
els 0 and 3 respectively of the maximum pyramid.

The diagram below (Fig. 10) shows the error be-
tween the obtained and the real y-coordinate of the
center point of the die for 22 frames. The blue line
is the real y-coordinate and the red points are the re-
sults of our method. The average error for 50 frames
(until the die stops) is 0.58 pixels.
Finally, the strengths of our method is proven with

different experiments:

• Robustness to illumination changes: We
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Table 2. Maximum pyramid and the errors in pixels from
the theoretical results

face area 40×40 pixels
Level λ σλ εσλ δλ εδλ
0 40 0 8 0
1 21 0.5 3 0.5
2 12 0.25 0 0
3 8 0.37 0 0
4 6 0.69 0 0
5 4 0.16 0 0

high resolution image (310×310 pixels)
Level λ σλ εσλ δλ εδλ
0 310 0 60 0
1 157 0.5 28 0.5
2 81 1.25 12 0.75
3 40 1.37 4 0.87
4 23 0.81 0 0
5 13 0.4 0 0
6 8 0.2 0 0
7 6 0.6 0 0

I1 I2 I3

I4 I5 I6

I7 I8 I9

Fig. 8. PEC method at level 3 of the maximum pyramid
(object position)

Figure 10. Center-point trajectory (y-coordinate)

changed the illumination in the training se-

I1 I2 I3

I4 I5 I6

I7 I8 I9

Fig. 9. PEC method at level 0 of the maximum pyramid
(3D pose estimation)

quence Fig. 11. As can be seen in the bottom
row the checkpoints handle a very abrupt light-
ing changes.

It It+1 It+2

Fig. 11. Robustness to illumination changes

• Insensitivity to large view changes: The evalua-
tion of the check-points at highest levels of the
pyramid can handle large view changes. More-
over, it also updates the motion model. Fig. 12
shows in the top row the frames It, It+12, It+13

and It+14 of a video sequence. As can be seen in
the bottom row, it localizes the die in the frame
It+12 and updates the motion model. Therefore,
the prediction in the frame It+14 is more accu-
rate than in frame It+13.

• Computationally Cheap: The pyramid of the
current frame It+1 is the same pyramid as the
previous frame It, where only the differences
between It+1 and It have been updated. Fig. 13
shows two consecutive frames and their differ-
ences on the top row, while the row below shows
the differences at level 1 of the maximum pyra-
mid. In this particular example, the dimensions
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It It+12 It+13 It+14

Fig. 12. Insensitivity to large view changes

of It and It+1 are equal to 640x480= 307200
pixels, there are 5020 different cells at the base
level 0, 17 at level 1, 10 at level 2 , 2 at level 3
and 0 in the rest of levels.

It It+1 It+1 - It

Fig. 13. Computationally Cheap.

5. Conclusion

This paper has proposed a method for 3D track-
ing high-resolution images in a video sequence at
high frame-rates. It extends the process employed
in our SSPR paper [17]. As in the previous ver-
sion, this is a marker-less 3D tracking. It checks the
cells where the 2D projections of the check-points
should be and calculates the prediction error with a
top-down method. The main novelty of this proposal
is that, instead of searching an optimal level along
of the pyramid to test the check-points, it now uses
the properties of the maximum pyramid to know the
sizes of the salient features at all levels of the pyra-
mid. The method is robust to illumination and large
view changes, computationally cheap and does not
require large amount of memory. To demonstrate
the new concept we have chosen a die because of its
simple structure: six well distinguished faces and 21
dark dots. Future developments of our method will
extract automatically the check-points from any pos-
sible salient feature shape.
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Abstract. Range scans provide detailed 3D
structural information about stationary objects
but lack continuous surfaces. Images and videos,
on the other hand, contain cohesive, high reso-
lution color information about scenes. The 2D
imagery can also show how buildings and fo-
liage change over time and record human mo-
tion. When we fuse these two valuable sources of
information together, a new medium is created
for viewing and studying data. In this paper, we
discuss a fully automatic approach for creating
3D scenes by registering images and videos with
range scans. Information obtained from images
and videos taken at different times from different
cameras can be combined with the full 3D struc-
ture of a scene provided by a LIDAR range scan.
Fusing the 2D and 3D information provides a
unique perspective not available when viewing ei-
ther mode separately. This can be useful for eas-
ily constructing 3D models and creating simula-
tions of athletic, transportive, artistic, or crim-
inal activity. The data we work with includes
a large variety of objects, including architecture,
foliage, and people. We evaluate our system by
computing the reprojection error for each calcu-
lated camera position. Our results are presented
by showing 2D and the 2D-3D fused information
for qualitative validation.

1. Introduction

Photography and range scans often provide
differing but complementing information about
the same subject. In this paper, we propose a
method for combining these two modalities by
projecting 2D data onto 3D point clouds ob-
tained with a LIDAR range scanner, as is shown
in Figure 1. The 2D data consists of ordinary
photographs and videos. We create a unique

Figure 1. Three photographs projected onto scan of
Jesse Hall.

model allowing the 2D imagery to be viewed
from different areas of interest with its correct
3D structural information in a single space. 2D
imagery obtained at varying times and perspec-
tives from arbitrary cameras can be fused with a
single range scan. Data compiled in this manner
can be utilized to review events that have oc-
curred in an area such as vehicles driving around
or a group of people congregating. All that is re-
quired is that the location of interest be scanned
once. For instance, footage from a security cam-
era can be projected onto a scan of a store or a
jail to help law enforcement agencies better their
method of visualization of the scene of interest.
When information from different perspectives is
combined in one system, new information may
become available to viewers as they navigate and
watch the scene from different angles. This pro-
gram also paves a way toward creating a large
database of range scans, images, and videos to
be used for image localization. An individual can
take a photo or video with their personal cam-
era, upload it to the system which will match it
to the appropriate scans, and show the person
their location. This could help users navigate a
new area or gain information about their current
location. For instance, local and architectural
history can be added into the database and be-
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come accessible whenever the user takes a picture
of a particular building. 3D models constructed
using our method may be beneficial for artists
and the entertainment industry. Modeling archi-
tecture and foliage can be extremely time con-
suming and complex. However, our method fa-
cilitates the user obtaining a detailed model in
the relatively short amount of time required to
scan a scene and take several photographs.

1.1. Literature Review

A common goal is to register 2D images taken
with arbitrary cameras with a 3D point cloud.
The literature discusses solutions to this prob-
lem using a variety of data types. The method-
ologies described here are developed based on
the information inherent in specific data sources
and address difficulties posed by particular sit-
uations. The modality of the 3D data may be
a range scan as used in the work of Stamos [26]
and Neumann [18] or a structure from motion
(SfM) point cloud as seen in Snavely’s work [24]
[25]. Various types of features (image-based [14],
structural [26], etc.), certain system constraints
(limiting camera motion to rotation [3]) and/or
environmental information (GPS, GIS informa-
tion, etc.) are always assumed to be present
to help solve this problem [18] [9]. Often times,
the proposed algorithm will call for finding key-
point matches [14] between the camera images
[19]. Images can be matched to other regular
cameras to create a new 3D relationship or to a
set of images that have been preregistered with
the 3D scan, as will be described in more detail
below [26] [11] [5] [20].

Much of the work in this field focuses on 3D
representations of urban environments that con-
tain repetitive, linear structures and features.
Linear features refer to the straight, identifi-
able “edges” in most architecture, such as win-
dows and door frames. Schindler [21] handles
this situation by identifying structural patterns
in both the 2D and 3D data and then match-
ing the patterns across dimensions. This ap-
proach avoids the confusion presented when us-
ing feature matching algorithms such as SIFT
on repetitive data. The relative camera loca-
tion to the 3D data is pinpointed using this rela-
tionship. Sinha [22] approaches the urban scene
registration problem by identifying planes in an

SfM point cloud. Matching planes in the 2D
data are located by identifying vanishing points,
creating 3D line segments, and constructing 3D
planes. After registration, the planes are tex-
ture mapped. Planes in urban settings are also
identified in Micusik’s [17] and Gallup’s [8] work.
Gallup et al. perform multiple sweeps through a
scene to identify planes with different normals.

Stamos et al. [26] and Li et al. [12] both
fuse 2D photographs with range scans to produce
photo-realistic models of urban scenes. These
methods identify linear features and vanishing
points in the 2D images. Stamos uses this infor-
mation to estimate intrinsic camera parameters
whereas Li relies on these calculations to rectify
images. Wan et al. [27] also take advantage of
the linear features inherent in urban scenes to
estimate camera locations from vanishing lines.
The estimates from this single-view geometry ap-
proach are combined to create a structural esti-
mate of the entire scene.

Several groups have also worked on extract-
ing information about video streams in relation
to 3D structures. Nister [20] estimates camera
motion in a video sequence, or a stereo camera
setup. Features are extracted between images,
the camera location is estimated, and an im-
age trajectory is constructed. The entire camera
motion estimate is based on visual information
alone. In [29], Zhao et al. develop a method
that works with continuous video as well. They
project video onto a 3D point cloud obtained
from a 3D sensor. Their method constructs an
intermediary SfM point cloud from the video se-
quence using a dense stereo matching algorithm.
Registration between the SfM and range scan
point clouds is obtained using the iterative clos-
est point algorithm is manually initialized [2].
This method is focused on airborne data simi-
larly to the works of both Mastic [16] and Al-
harthy [1] have who have produced systems for
matching 2D images to aerial LIDAR data.

There are several general methods for match-
ing images to 3D models in order to obtain the
camera location. The underlying goal is to solve
for the camera parameters as discussed in Yang
[28]. One method involves matching linear or
circular structures between the 2D and 3D mod-
els. This approach is especially useful for urban
models with highly regularized features as seen
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in Friedman [7] and Schindler [21]. Another com-
mon methodology is to match keypoint features
between camera images and a 2D image that is
pre-registered with the 3D model. This can be
used to perform the eight-point and five-point al-
gorithms, as described in Ma [15] and Nister [19]
in order to estimate the fundamental matrix, to
solve for the projection matrix, to carry out 3D
registration, and to perform object recognition.
According to Yang [28], keypoint matches can
be inaccurate when the images differ in quali-
ties such as illumination and viewpoint. This
greatly limits the datasets on which this type of
approach can be reliably used. Irschara et al.
[11] propose a solution to this problem. Their
method uses SIFT matching between new im-
ages and images with known camera locations to
find the locations of new images in relation to an
existing 3D point cloud. Synthetic images from
uncaptured viewpoints are constructed in such a
way the most general viewpoints of a scene are
represented with either a real or synthetic photo
that can be matched to new images. Durand’s
work [5] demonstrates a similar idea to these pa-
pers by pinpointing the exact camera location
and orientation of a historical photograph. Two
new photographs are captured and used to con-
struct a 3D model. This model is referenced to
calculate the camera parameters for the histori-
cal photograph.

Several of these papers, though with similar
results as those presented in this paper, require
some form of user interaction when performing
registration. Many methods rely on the user
marking matching planes and line segments be-
tween 2D and 3D data [12][23]. Marking edges
may also be used to calculate locations of van-
ishing points [12]. Minimal user interaction is re-
quired in [13] during the matching stage as well
to ensure that the 3D data and the 2D image of
interest are being viewed from similar perspec-
tives.

1.2. Contributions

Our first main contribution is an automatic
method for registering images, videos, and range
scans using a minimal amount of information.
Our method is quite flexible as we only require
data from a scanner that any individual can op-
erate. Our registration is performed using SIFT

features [14] in the 2D imagery and the calibra-
tion information of the LIDAR camera. By rely-
ing on local feature descriptors and not looking
to structural (linear, circular, etc.) features, we
are able to work with datasets heavy in foliage
and branch out from purely urban scenes. We
treat the accurate LIDAR data as ground truth
for our estimated 3D structure when determin-
ing camera locations. We also present a novel
approach for viewing videos and 3D models. Un-
like many methods mentioned above, we do not
simplify the 3D geometry to a series of primi-
tives or require a 3D polygonal mesh for texture
mapping. By using a high resolution point cloud
and projecting an image onto the structure, a 3D
model is created using basic geometry without
sacrificing fine details in architecture and foliage.

2. Methodology

Our registration method is based on the as-
sumption that a point cloud and photographs
with known 2D-3D correspondences are avail-
able. Ideally, the entire 3D point cloud should
have matching 2D information in the form of
photographs. We use a Leica C10 HDS LIDAR
scanner which provides a high resolution, regu-
larly spaced point cloud of a scene and 2D im-
ages of the scanned subject using a built-in cam-
era. The LIDAR images have a resolution of
1920x1920 pixels. The output data from the
scanner also consists of files containing the in-
ternal and external camera parameters for each
image. This provides all the necessary informa-
tion to establish a link between the 2D LIDAR
images and the LIDAR range scan. The pho-
tographs and videos were taken with a variety of
cameras including a Nikon D80 and various cam-
era phones. We specify the image resolutions
used in each test with our results. When han-
dling videos, individual frames are extracted and
treated as still images. Our data was collected
on the University of Missouri-Columbia campus.
For all of our tests, we assume the images and
range scan used all involve the same subject.

We use this data to achieve our goal of project-
ing 2D imagery onto 3D range scans. A key issue
in accomplishing the final projection is solving
for the camera locations of all obtained 2D data
in relation to the range scan. In order to solve
this problem, our algorithm calculates the pro-
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jection matrix of all camera images that have a
high number of reliable keypoint matches with a
subset of the LIDAR images. The 3D locations of
the range scan points that match the 2D feature
points are treated as the absolute locations for
these points. This set of 2D-3D correspondences
is used to calculate the projection matrix of the
camera. The projection matrix represents the
intrinsic and extrinsic camera parameters, yield-
ing the camera’s relationship to the range scan.
Throughout this process, we consider the 3D LI-
DAR to be ground truth. Similarly to the man-
ner that the GPS locations of the cameras are
treated in [4], we want to minimize the distance
between the LIDAR points and the 3D points
inferred from the solved for camera position.

An exact mapping between the LIDAR cam-
era images and the 3D point cloud is known from
a provided file giving the camera’s focal length
in pixels and extrinsic parameters (rotation and
translation). The point cloud can be projected
onto the various image planes using this informa-
tion. Each point in the point cloud is projected
onto each image plane to find it’s corresponding
2D points using Equations 1-3.

â = R ∗ a + t (1)

x = f ∗ âx

âz
− w

2 (2)

y = f ∗ ây

âz
− h

2 (3)

where f is the focal length of the LIDAR cam-
era in pixels, R is the rotation, t is the trans-
lation, w is the image width, and h is the im-
age height. These parameters are particular to
the individual image corresponding to the image
plane in question. If the solved for x and y fall
within the boundaries of the image dimensions,
the 3D point has a corresponding 2D point in
that image. The entire point cloud is projected
onto each image once as a pre-processing step
and the 2D-3D correspondences are saved. This
step need only be performed once for any scan
and is detailed in Algorithm 1.

Each camera image that is to be projected
onto the range scan is matched against the LI-
DAR camera images using SIFT matching. At
least six 2D-3D matches are needed to solve for
the camera’s projection matrix as is described in
the Gold Standard Algorithm in [10]. The list of

Algorithm 1 Calculate 2D-3D Correspondence
procedure PROJECT(pts, camera param-
eters)

n, m← 0
while n < number of pts do

a← pts[n]
â← R ∗ a + t
x← f ∗ âx

âz
− w

2
y ← f ∗ ây

âz
− h

2
if 0 < x < image width then

if 0 < y < image height then
list[m]← x, y, a
m← m + 1

end if
end if
n← n + 1

end while
return list

end procedure

2D-3D correspondences from the pre-processing
stage is used to determine the 3D coordinates
of the feature points in the LIDAR camera im-
ages. These 3D positions are considered to be
extremely accurate representations of the match-
ing 2D points in the regular camera image. Fol-
lowing this line of thinking, we use the set of
3D LIDAR point positions and 2D image points
to solve for the projection matrix of the regular
camera. This six-point algorithm is carried out
using RANSAC [6] to find the set of matches that
calculate the most accurate projection matrix.
The most accurate matrix is defined as the one
that yields the lowest average reprojection error
for all of the feature correspondences. Matches
with a reprojection error lower than a certain
threshold are identified as inliers, and another
round of RANSAC is preformed using only these
correspondences. The final projection matrix is
once again the one that produces the lowest av-
erage reprojection error.

Once the projection matrix, and thus the cam-
era parameters, is known, the image is registered
with the range scan. To display this registration,
the scan is projected onto the image as described
in Algorithm 1. The color assigned to each 3D
point is the color of the pixel onto which it most
closely projected. This 2D-3D correspondence is
saved for each image that is projected onto the
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scan. This image can then replace a LIDAR im-
age in the steps previously described. This is
extremely useful as a user’s image or video may
vary greatly in scale, illumination, and perspec-
tive from the set of LIDAR images. This can lead
to the feature matching step producing erroneous
correspondences. By creating a web of images
each with gradual lighting and viewing location
changes, more images can be accurately matched
and added into the system. The system will per-
form much better if the initial images matched
to the range scan are similar in perspective and
illumination to the LIDAR images. Gathering
images taken under similar conditions to the LI-
DAR images provides a strong base for creating
this web. When displaying the final registration,
the 3D points can be drawn in varying sizes de-
pending on the density of the range scan. Larger
points can be useful for filling in holes. The 3D
model can then be manipulated for novel-view
generation purposes.

Figure 2. Above: Image projected on Columns Scan.
Below: Original camera image. Image resolution is
1936x1296.

3. Results and Discussion
We judge the accuracy of our results both

qualitatively and quantitatively. When the 2D
images are viewed next to the registration of the
images and the range scan (Figures 2, 3, and 5),

Figure 3. Above: Two images projected onto Cornell
Hall Scan. Bottom Left: Photograph that is pro-
jected onto left side of scan. Bottom Right: Photo-
graph projected onto right side of scan. Image reso-
lution is 1932x1294.

one can easily visually judge the accuracy of the
projected data. We present the results from a
variety of viewpoints in Figures 1 and 4 to show
the usefulness of the method for novel-view gen-
eration. Figure 5 shows extracted frames from
a video of a person walking in front of Cornell
Hall projected onto a range scan. Regular pho-
tographs are also projected onto the scan to pro-
vide color information for portions of the scan
that were not captured in the video. This exam-
ple shows how our program can be used to view
the full context of a scene when only a portion
has been recorded.

The reprojection error associated with a cho-
sen camera position is also considered in judg-
ing the accuracy of our results. This error is a
measure of how far a 3D point is from its cor-
responding 2D pixel when the 3D point is pro-
jected onto the image plane. The reprojection
errors and number of feature matches and inlier
matches associated with our presented results are
shown in Table 1. The reprojection error is mea-
sured in image pixels in the coordinate system of
the image being registered with the range scan.
The errors for our results are well under a pixel,
aligning with the accuracy observed in the picto-
rial registration results. We have obtained high
accuracy on images ranging greatly in resolution
(780x420 to 1936x1296). These errors can be
further decreased by removing radial distortion
in the images and performing bundle adjustment
on both pairs of images and the set of projected
images.
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The performance of this system can be en-
hanced in the future by not projecting every
point in the range scan onto every image plane
as described in Algorithm 1. An approach can
be developed for partitioning the range scan into
sections based on location and narrowing down
what regions of the scan are viewable from a cer-
tain camera location.

Image RE M I
Columns (Fig. 2) 0.075 93 85
Cornell Left (Fig. 3) 0.046 197 171
Cornell Right (Fig. 3) 0.171 316 277
Jesse Hall Left (Fig. 4) 0.092 155 141
Jesse Hall Center (Fig. 4) 0.151 446 423
Jesse Hall Right (Fig. 4) 0.165 404 379
Video Frame 4 (Fig. 5) 0.078 143 122
Video Frame 26 (Fig. 5) 0.081 99 87
Video Frame 49 (Fig. 5) 0.046 316 277

Table 1. Reprojection Error(RE) of presented re-
sults, measured in pixels, with number of fea-
ture matches(M) and number of inlying correspon-
dences(I).

4. Conclusion and Future Work

In this paper, a system has been presented
that matches sets of ordinary 2D images and
videos taken at different times, from different an-
gles, and by different people to a single range
scan. This information can be used to create 3D
models of both architecture and foliage that may
be observed from novel viewpoints. The registra-
tion process is completely automatic and the fi-
nal output allows the user to view images from a
variety of sources in one cohesive environment.
This method can be easily expanded upon to
work with large datasets of images. Once a set of
images is registered with the scan, a SfM point
cloud based on these images can be created to
augment the range scan. The SfM point cloud
can be used to fill in holes in the range scan or
insert objects into the scene that were not orig-
inally viewed such as vehicles, people, and new
foliage. A large set of matching images can also
be used to perform a global optimization on all
of the camera poses and increase the accuracy of
the system.
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Figure 4. Above: Three Images projected onto Jesse Hall Scan (two perspectives shown). Bottom: Left, center,
and right original images that are projected onto the scan. Image resolution is 1549x1037.

Figure 5. Left: Three frames extracted from a video sequence. Video frame resolution is 720x480. From top
to bottom, frames 4, 49, and 126. Right: Frames 4, 26, and 49 projected onto Cornell Hall Scan on top of
previously shown images.
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Abstract. In this paper we propose, design and im-
plement a method of Bundle adjustment (BA) incor-
porating constraints that describe a camera under-
going a circular motion. Using these constraints we
are able to capture the physical properties of vari-
ous rotating camera systems into the BA process, for
example panoramic camera systems used on Mars
rovers or turntables. We incorporated our method
into the recently released Google non-linear least
squares solver Ceres. By using constrained BA, we
aim at improving the accuracy of reconstructing both
the 3D points and the camera positions. The im-
provement in accuracy was experimentally verified
on synthetic as well as real datasets.

1. Introduction

There has been a lot of attention given to the
Structure from motion reconstruction, resulting in
many practical applications such as Photosynth and
Bundler [13]. Current research aims to provide more
precise reconstruction as well as the ability to handle
larger datasets [1], [3].

Bundle Adjustment (BA) [14] is an important part
of the structure from motion reconstruction as it opti-
mizes the resulting estimates of 3D point coordinates
and the position, orientation and calibration of cam-
eras. Detailed analysis of BA optimization methods,
parametrizations, error modeling and constraints has
been given in [14]. An efficient and comprehensive
algorithm that utilizes the sparsity of BA has been de-
veloped by Lourakis and Argyros [10] and the code
is made freely available. This algorithm has been fur-
ther used in [13], to build a full structure from mo-
tion pipeline. An extended version of [10] has been
developed in [7] utilizing the sparsity even further
in order to reduce computation time. Recently, the
performance of BA on large datasets has been scru-

tinized [1]. The use of conjugate gradients and its
effect on performance has been investigated in [2].
In [6], significant performance improvements using
multiple techniques, such as embedded point itera-
tions and preconditioned conjugate gradients were
shown.

1.1. Constrained Bundle Adjustment

A general graph solver which can be used for BA
is described in [12] and available online. Although
[12] seems to be capable of handling camera con-
straints, authors have not investigated this possibility.
BA with constraints on the structure has been used in
[15] and [11]. Experiments with camera constrained
BA designed specifically for stereo rig were carried
out in [8]. The results showed that modeling stereo
camera pair with proper constraints and incorporat-
ing it into BA can improve the precision of the recon-
struction. In [4], authors incorporate constraints for
a Pancam system consisting of two cameras mounted
on a rotating shaft used on a Mars Exploration Rover
mission. BA designed for a turntable has been pre-
sented in [15], where authors described the object as
a set of points rotating around an axis with a fixed
distance from the camera. They showed that this pro-
jection model brought an improvement in terms of
precision of the reconstruction.

1.2. Contribution

In this paper we provide a general approach to
describe a rotating camera and incorporate it into
Bundle Adjustment optimization implemented in the
open source solver Ceres from Google. In compar-
ison to [4] and [15] our method is not limited to a
specific Pancam system or a turntable even though it
is capable of handling both of them. Using our ap-
proach we can optimize wide variety of scenarios,
such as multiple panoramic cameras in one scene,
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cameras undergoing circular motions with differ-
ent radii, orientations and on different locations or
turntables with more than just one camera position.
This is done by adjusting the camera model, keeping
only the circular motion constraints. The initializa-
tion does not require any previous knowledge about
the scene as in the case of [4], instead we estimate
the constraints from an initial unconstrained SfM re-
sult. In our experiments we confirm that using just
enough constraints to keep the generality still leads
to improvement of the reconstruction in terms of pre-
cision.

In section 2 we describe the basics of BA and in-
troduce the notation we will use further in the paper.
Section 3 presents the model used for rotating cam-
era systems. Experiments and their results are shown
in section 4 and the results discussed in section 5.

2. Bundle Adjustment

We build our method upon the Google non-linear
least squares optimizer Ceres, which encompasses
several methods for Bundle Adjustment, including
the approaches described in [1] and [9]. We set Ceres
to use a Levenberg-Marquardt algorithm [14] which
iteratively solves the normal equation

(JTJ+
1

µ
D)δp = JTe (1)

whereJ is the Jacobian of the projection function,
D is a matrix containing a diagonal ofJ, p is the
vector of parameters of cameras and 3D points and
e is the error vector between the measured and pre-
dicted image points. The trust region radiusµ con-
trols the magnitude of sought updatesδp to the pa-
rameter vector. Detailed description can be found in
[5] and [14].J andJTJ have known sparse structure
and do not have to be computed explicitly. Ceres can
make use of the Schur complement [5] to solve (1)
for the camera parameters first, which requires less
computational effort.

The projection functions we use are based on the
perspective camera projection

λx = PX (2)

whereX is a 3D point andx the image point, both in
homogeneous coordinates.P is the projection matrix
according to [5] and it can be decomposed as

P = KR [I| −C] (3)

whereK is the calibration matrix,R is a rotation
matrix from world to camera coordinates andC is the
camera center in the world coordinates. According
to [5], the calibration matrix can be described by 5
parameters as

K =




αx s x0
0 arαx y0
0 0 1


 (4)

Where
ar =

αy

αx
(5)

is the aspcet ratio.

3. Camera systems with rotational constraint

When dealing with multiple camera systems,
which have some fixed physical properties, it would
be meaningful to utilize this additional information
in the BA process. We did that by using an adapted
projection function describing the relationships be-
tween cameras. Such systems can be a camera rotat-
ing around an axis, where our additional knowledge
is represented by the fact that camera centers lie on a
circular trajectory. Each camera centerCi can there-
fore be expressed by a function involving center of
rotation, the orientation of the rotation plane in space,
the radius of the rotation and a displacement angle of
the camera. Such equation can be written as

Ci = Rc




ρ cosφi

ρ sinφi

0


+




Ccx

Ccy

Ccz


 (6)

whereRc is a rotation matrix representing the orien-
tation of the panoramic rotation plane in space, vec-
tor Cc = [Ccx, Ccy, Ccz]

T represents the center of
rotation,ρ the radius andφ the camera displacement
angle. HavingCi we can constructPi followingly

Pi = Ri [I| −Ci] (7)

When we express the rotation matrices using quater-
nions, we obtain the following parameter vector

aj = [k,q,CT
c ,qc, ρ] (8)

where

ki = [fx, x0, y0, ar, s]
qi = [qi1, qi2, qi3, qi4, φj ]
Cc = [Ccx, Ccy, Ccz]

T

qc = [qc1, qc2, qc3, qc4]

(9)
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so the blocks denoted by indexi belong to each in-
dividual camera and blocks denoted byj describe
the circular constraints for a cluster of cameras. It is
clear, that parameters describing the panoramic rota-
tion (Cc, qc, ρ) will be identical for all cameras from
the same panorama. It is possible within the Ceres
platform to make any of these blocks shared by mul-
tiple cameras. The reason why we chose such blocks
is that we can set any combination of radius, circle
orientation and circle position shared also between
multiple camera clusters. As an example, Pancam in
[4] could be described by two camera clusters with
shared rotation axis position and orientation but dif-
ferent radii.

α
R
c
(qc1,qc2,qc3,qc4)

β

Ri(qi1,qi2,qi3,qi4)

Cc

ρ

φi

Figure 1. Visualization of parameters used to describe
panoramic camera. ParametersCc, Rc and ρ describe
the circle of rotation, therefore they are shared among all
cameras within this panorama.Ci andφi determine the
positions of individual camera centers andRi their orien-
tations.

4. Experiments

To validate our method, we performed a set of
tests on synthetic and real data. We compared our ex-
tended bundle adjustment (XBA) algorithm to SBA,
upon which our algorithm was built.

4.1. Parametrization

Shared parameters in XBA were set to utilize all
physically meaningful properties of the camera sys-
tem. In the case of panoramic cameras, the camera
centers were placed on circles and all circles shared
the same radius. Stereo setup used a shared base-
line and orientation of the second camera with re-
spect to the first one over the whole sequence. Both
SBA and XBA adjusted 3 internal camera calibra-
tion parameters (fx,x0,y0) and kept the 2 remaining
fixed (ar,s). We also estimated the radial distortion
using the same model as [13]. The overall number

Table 1. Datasets
cameras points projections

Dino1 40 14038 42241
Dino2 20 3080 7343
Ship 13 8851 29259
Street 54 34443 93348

of parameters describing a camera was 14 (five for
intrinsics, four for camera orientation, three for cam-
era center location and two for radial distortion) for
SBA and 20 (as in (8) plus two for radial distortion)
for XBA. Because two intrinsic were kept fixed, the
numbers of parameters adjusted were 12 and 18 for
SBA and XBA respectively. The XBA parameters
were described in section 3.

4.2. Datasets

We examined the performance of XBA on four
real world dataset captured using a panoramic cam-
era setup. Pictures were acquired using a Nikon D60
and D3100 DSLR cameras. First dataset was simu-
lating a panoramic observation of environment, us-
ing a camera rotating on a shaft mounted on a tri-
pod. Three panoramic observations were made on
three different locations, each consisting of 18 im-
ages of an urban environment. The data was then
reconstructed using the SfM pipeline [13] and esti-
mates for camera and structure parameters were ob-
tained. The rest of the real world datasets was ob-
tained using a turntable with two objects each with
different shape properties. The turntable was used
to capture the model from various viewpoints, while
keeping the circular trajectory of the camera with re-
spect to the object.

To evaluate our method, we needed some ground
truth information about the scenes. For that purpose
we took the outcome of the SfM pipeline, placed the
cameras on circular trajectories (as they were in re-
ality) and projected the 3D points into new image
projections. Therefore, we obtained a perfect ground
truth information in a real world scenarios.

In all datasets, the 3D points were perturbed by
a uniformly distributed errore ∈ [0; d/20], whered
is the distance from the camera centers. The image
projections were perturbed by a Gaussian noise with
mean 0 and standard deviation of 0.7.
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(a)

(b)

(c)

(d)

Figure 2. Perturbed initializations for datasets (a) Dino1,
(b) Dino2, (c) Ship and (d) Street.

4.3. Analysis

In measurements we analyzed the following as-
pects

1. Error in reconstructed structure with respect to
ground truth

2. Error in reconstructed camera positions with re-
spect to ground truth

3. Evolution of the reconstruction error during it-
erations

4. Evolution of the mean reprojection error

To express the reconstruction error, we used a
least square fit of either the resulting 3D point posi-
tions or the camera center positions onto the ground
truth data. Camera fit means that a transformation
was found between the reconstructed camera centers
and the ground truth camera centers and this trans-
formation was then applied to reconstructed camera
centers as well as 3D points. Points fit applies the
same principle but the transformation between recon-
structed and ground truth 3D points was found in this
case. After the fit, error in both camera centers and
3D points was measured as the Euclidean distance
from the correct positions. These measurements ex-
press how accurately were the camera positions and
3D points reconstructed and also how accurately can
we determine the camera positions knowing the 3D
structure parameters and vice versa. This evaluation
was also carried out for each individual BA step to
show how the accuracy of the model develops dur-
ing the process. For each dataset, the tests were run
multiple times with different random initialization.

Results of reconstruction error of camera centers
are in figure 4, which shows, how precisely we es-
timated the surrounding structure relatively to the
camera positions, e.g. their relative scale. The pre-
cision of reconstructed structure with respect to the
ground truth can be read from figure 5. Analogically
to the camera centers’ case, figure 5 now show how
precisely we can determine the camera centers rela-
tively to the structure.

To investigate the behavior of XBA versus SBA
deeper, we show for each iteration on the dataset
Dino2 the mean reprojection error and the recon-
struction error in Figure .

5. Discussion

As shown in figure 3, more dimensions of freedom
cause SBA to achieve lower image reprojection error,
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Figure 3. Real PANCAM. (a) The image reprojection
error during iterations of SBA and XBA on the dataset
Street. (b) Development in 3D point and camera position
error during iterations of SBA and XBA on the dataset
Street.

but the constraints ensure that the 3D reconstruction
error becomes lower using XBA.

The results, summarized in table 2, show that
XBA can in certain scenarios outperform SBA in
terms of reconstruction precision. Particularly, in the
dataset Street the reconstruction errors of XBA were
much smaller than of SBA. As can be seen in the
results, the difference between XBA and SBA varies
with different initializations. On rare occasions, SBA
achieves similar results as XBA or even slightly bet-
ter. However, on average, the reconstruction using
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Figure 4.Camera position error. Error in camera center
positions after reconstructing and fitting through 3D point
positions for datasets (a) Dino1, (b) Dino2, (c) Ship and
(d) Street.

XBA was more correlated with the ground truth.
This could be useful in many applications, such as
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Figure 5.Camera position error. Error in camera center
positions after reconstructing and fitting through 3D point
positions for datasets (a) Dino1, (b) Dino2, (c) Ship and
(d) Street.

localization and mapping. If one knows information
about the dimension of either the structure or camera

Table 2. Summary of the results for all datasets

Mean reconstruction error [m]
SBA XBA

cams pts cams pts

Dino1
cfit 0.0207 0.0060 0.0121 0.0089
pfit 0.0208 0.0035 0.0135 0.0017

Dino2
cfit 0.0166 0.0348 0.0120 0.0306
pfit 0.0564 0.0066 0.0567 0.0075

Ship
cfit 0.0033 0.0042 0.0023 0.0045
pfit 0.1166 0.0149 0.0638 0.0082

Street
cfit 0.0763 0.1528 0.0456 0.0939
pfit 0.796 0.1528 0.0489 0.0950

positions (for example the diameter of panoramic ro-
tation), one can better estimate the dimension of the
other.

For the datasets acquired using a turntable the per-
formance of XBA was not always better than SBA
as in the case of the Street dataset. In dataset Dino1
XBA handled better the reconstruction of the scene
with respect to the points and in dataset Dino2 with
respect to the cameras. Since Dino1 has far less cam-
eras, points and projections, this could be interpreted
as the ability of constrained BA to maintain the cor-
rect positions of cameras even with less observations
and interconnectivity of the cameras and points in the
scene.

Another situation occurs in the case of the Ship
dataset. The points fit slightly better to the ground
truth cameras using SBA, but points with respect to
points and cameras with respect to either cameras or
points are reconstructed better using XBA by a large
margin. In this scenario, the camera circle is purpo-
sively incomplete and, as expected, XBA handled the
camera positions much better. This could be useful
if we are interested in precise poses of cameras, such
as in the case of dense stereo reconstruction.

However, it can be concluded, that XBA does not
bring such an improvement in the case of turntable
scenarios, where all cameras are pointing towards a
single object and the scene is heavily interconnected,
i.e. cameras have high overlaps and each point is
observed by many cameras. The potential of XBA
seems to be more in the outdoor scenarios, where
cameras are pointing outwards of the axis of rotation
and have smaller overlap.
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6. Conclusion

We proposed and implemented a new method
of constrained BA (XBA) for cameras undergoing
circular motion into Google optimization software
Ceres. This method incorporates circular constraints
for systems such as panoramic camera or a turntable.
The method was validated on several real datasets
and the reconstruction error in camera positions and
3D points was measured. The results show for cer-
tain scenarios improved quality of the reconstruction
over the previous method. The advantages of this
method and its possible applications were discussed.
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[2] M. Byröd and K.Åström. Conjugate gradient bundle
adjustment. InProceedings of the 11th European
conference on Computer vision: Part II, ECCV’10,
pages 114–127, Berlin, Heidelberg, 2010. Springer-
Verlag. 1

[3] D. Crandall, A. Owens, and N. Snavely. Discrete-
continuous optimization for large-scale structure
from motion. IEEE Conference on Computer Vi-
sion and Pattern Recognition (2008), 286(26):3001–
3008, 2011. 1

[4] K. Di, F. Xu, R. Li, B. Adjustment, and P. Image.
Constrained bundle adjustment of panoramic stereo
images for mars landing site mapping.MMT, 2003.
1, 2, 3

[5] R. I. Hartley and A. Zisserman.Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004. 2

[6] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S.
Kweon. Pushing the envelope of modern methods
for bundle adjustment. InProc. IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages
1474–1481, 2010. 1

[7] K. Konolige. Sparse sparse bundle adjustment. In
British Machine Vision Conference, Aberystwyth,
Wales, 08/2010 2010. 1

[8] C. Kurz, T. Thormählen, and H.-P. Seidel. Bun-
dle adjustment for stereoscopic 3D. In A. Gaga-
lowicz and W. Philips, editors,5th International
Conference on Computer Vision/Computer Graphics
Collaboration Techniques (MIRAGE 2011), volume
6930 ofLecture Notes in Computer Science, pages

1–12, Rocquencourt, France, October 2011. Inria,
Springer. 1

[9] A. Kushal. Visibility based preconditioning for bun-
dle adjustment. InProceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), CVPR ’12, pages 1442–1449, Wash-
ington, DC, USA, 2012. IEEE Computer Society. 2

[10] M. I. A. Lourakis and A. A. Argyros. Sba: A soft-
ware package for generic sparse bundle adjustment.
ACM Transactions on Mathematical Software, 36:1–
30, 2009. 1

[11] C. McGlone. Bundle Adjustment with Geometric
Constraints for Hypothesis Evaluation, pages 529–
534. 1996. 1

[12] H. S. K. K. Rainer Kuemmerle, Giorgio Grisetti and
W. Burgard. g2o: A general framework for graph
optimization. InIEEE International Conference on
Robotics and Automation (ICRA), 2011. 1

[13] N. Snavely. Bundler: Structure from mo-
tion (sfm) for unordered image collections.
http://phototour.cs.washington.edu/bundler/,
5 2011. 1, 3

[14] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgib-
bon. Bundle adjustment a modern synthesis. InVi-
sion Algorithms: Theory and Practice, LNCS, pages
298–375. Springer Verlag, 2000. 1, 2

[15] K. H. Wong, M. Ming, and Y. Chang. 3d model re-
construction by constrained bundle adjustment. In
Proceedings of the Pattern Recognition, 17th Inter-
national Conference on (ICPR’04) Volume 3 - Vol-
ume 03, ICPR ’04, pages 902–905, Washington, DC,
USA, 2004. IEEE Computer Society. 1

124



Author Index

Albl, Cenek, 118
Aldoma, Aitor, 86
Anwar, Hafeez, 71

Bischof, Horst, 63, 78
Boben, Markõ, 55
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man Lam, Kin, 39
Morago, Brittany, 110
Morard, Jean-Séverin, 63
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